dawn-bench-models/tensorflow/SQuAD/basic/trainer.py

74 lines
2.7 KiB
Python
Raw Normal View History

2017-08-17 12:43:17 -06:00
import tensorflow as tf
from basic.model import Model
from my.tensorflow import average_gradients
class Trainer(object):
def __init__(self, config, model):
assert isinstance(model, Model)
self.config = config
self.model = model
self.opt = tf.train.AdamOptimizer(config.init_lr)
self.loss = model.get_loss()
self.var_list = model.get_var_list()
self.global_step = model.get_global_step()
self.summary = model.summary
self.grads = self.opt.compute_gradients(self.loss, var_list=self.var_list)
self.train_op = self.opt.apply_gradients(self.grads, global_step=self.global_step)
def get_train_op(self):
return self.train_op
def step(self, sess, batch, get_summary=False):
assert isinstance(sess, tf.Session)
_, ds = batch
feed_dict = self.model.get_feed_dict(ds, True)
if get_summary:
loss, summary, train_op = \
sess.run([self.loss, self.summary, self.train_op], feed_dict=feed_dict)
else:
loss, train_op = sess.run([self.loss, self.train_op], feed_dict=feed_dict)
summary = None
return loss, summary, train_op
class MultiGPUTrainer(object):
def __init__(self, config, models):
model = models[0]
assert isinstance(model, Model)
self.config = config
self.model = model
self.opt = tf.train.AdamOptimizer(config.init_lr)
self.var_list = model.get_var_list()
self.global_step = model.get_global_step()
self.summary = model.summary
self.models = models
losses = []
grads_list = []
for gpu_idx, model in enumerate(models):
with tf.name_scope("grads_{}".format(gpu_idx)), tf.device("/{}:{}".format(config.device_type, gpu_idx)):
loss = model.get_loss()
grads = self.opt.compute_gradients(loss, var_list=self.var_list)
losses.append(loss)
grads_list.append(grads)
self.loss = tf.add_n(losses)/len(losses)
self.grads = average_gradients(grads_list)
self.train_op = self.opt.apply_gradients(self.grads, global_step=self.global_step)
def step(self, sess, batches, get_summary=False):
assert isinstance(sess, tf.Session)
feed_dict = {}
for batch, model in zip(batches, self.models):
_, ds = batch
feed_dict.update(model.get_feed_dict(ds, True))
if get_summary:
loss, summary, train_op = \
sess.run([self.loss, self.summary, self.train_op], feed_dict=feed_dict)
else:
loss, train_op = sess.run([self.loss, self.train_op], feed_dict=feed_dict)
summary = None
return loss, summary, train_op