130 lines
3.2 KiB
Python
130 lines
3.2 KiB
Python
|
import nltk
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def _set_span(t, i):
|
||
|
if isinstance(t[0], str):
|
||
|
t.span = (i, i+len(t))
|
||
|
else:
|
||
|
first = True
|
||
|
for c in t:
|
||
|
cur_span = _set_span(c, i)
|
||
|
i = cur_span[1]
|
||
|
if first:
|
||
|
min_ = cur_span[0]
|
||
|
first = False
|
||
|
max_ = cur_span[1]
|
||
|
t.span = (min_, max_)
|
||
|
return t.span
|
||
|
|
||
|
|
||
|
def set_span(t):
|
||
|
assert isinstance(t, nltk.tree.Tree)
|
||
|
try:
|
||
|
return _set_span(t, 0)
|
||
|
except:
|
||
|
print(t)
|
||
|
exit()
|
||
|
|
||
|
|
||
|
def tree_contains_span(tree, span):
|
||
|
"""
|
||
|
Assumes that tree span has been set with set_span
|
||
|
Returns true if any subtree of t has exact span as the given span
|
||
|
:param t:
|
||
|
:param span:
|
||
|
:return bool:
|
||
|
"""
|
||
|
return span in set(t.span for t in tree.subtrees())
|
||
|
|
||
|
|
||
|
def span_len(span):
|
||
|
return span[1] - span[0]
|
||
|
|
||
|
|
||
|
def span_overlap(s1, s2):
|
||
|
start = max(s1[0], s2[0])
|
||
|
stop = min(s1[1], s2[1])
|
||
|
if stop > start:
|
||
|
return start, stop
|
||
|
return None
|
||
|
|
||
|
|
||
|
def span_prec(true_span, pred_span):
|
||
|
overlap = span_overlap(true_span, pred_span)
|
||
|
if overlap is None:
|
||
|
return 0
|
||
|
return span_len(overlap) / span_len(pred_span)
|
||
|
|
||
|
|
||
|
def span_recall(true_span, pred_span):
|
||
|
overlap = span_overlap(true_span, pred_span)
|
||
|
if overlap is None:
|
||
|
return 0
|
||
|
return span_len(overlap) / span_len(true_span)
|
||
|
|
||
|
|
||
|
def span_f1(true_span, pred_span):
|
||
|
p = span_prec(true_span, pred_span)
|
||
|
r = span_recall(true_span, pred_span)
|
||
|
if p == 0 or r == 0:
|
||
|
return 0.0
|
||
|
return 2 * p * r / (p + r)
|
||
|
|
||
|
|
||
|
def find_max_f1_span(tree, span):
|
||
|
return find_max_f1_subtree(tree, span).span
|
||
|
|
||
|
|
||
|
def find_max_f1_subtree(tree, span):
|
||
|
return max(((t, span_f1(span, t.span)) for t in tree.subtrees()), key=lambda p: p[1])[0]
|
||
|
|
||
|
|
||
|
def tree2matrix(tree, node2num, row_size=None, col_size=None, dtype='int32'):
|
||
|
set_span(tree)
|
||
|
D = tree.height() - 1
|
||
|
B = len(tree.leaves())
|
||
|
row_size = row_size or D
|
||
|
col_size = col_size or B
|
||
|
matrix = np.zeros([row_size, col_size], dtype=dtype)
|
||
|
mask = np.zeros([row_size, col_size, col_size], dtype='bool')
|
||
|
|
||
|
for subtree in tree.subtrees():
|
||
|
row = subtree.height() - 2
|
||
|
col = subtree.span[0]
|
||
|
matrix[row, col] = node2num(subtree)
|
||
|
for subsub in subtree.subtrees():
|
||
|
if isinstance(subsub, nltk.tree.Tree):
|
||
|
mask[row, col, subsub.span[0]] = True
|
||
|
if not isinstance(subsub[0], nltk.tree.Tree):
|
||
|
c = subsub.span[0]
|
||
|
for r in range(row):
|
||
|
mask[r, c, c] = True
|
||
|
else:
|
||
|
mask[row, col, col] = True
|
||
|
|
||
|
return matrix, mask
|
||
|
|
||
|
|
||
|
def load_compressed_tree(s):
|
||
|
|
||
|
def compress_tree(tree):
|
||
|
assert not isinstance(tree, str)
|
||
|
if len(tree) == 1:
|
||
|
if isinstance(tree[0], nltk.tree.Tree):
|
||
|
return compress_tree(tree[0])
|
||
|
else:
|
||
|
return tree
|
||
|
else:
|
||
|
for i, t in enumerate(tree):
|
||
|
if isinstance(t, nltk.tree.Tree):
|
||
|
tree[i] = compress_tree(t)
|
||
|
else:
|
||
|
tree[i] = t
|
||
|
return tree
|
||
|
|
||
|
return compress_tree(nltk.tree.Tree.fromstring(s))
|
||
|
|
||
|
|
||
|
|