183 lines
6.7 KiB
Python
183 lines
6.7 KiB
Python
|
import argparse
|
||
|
import json
|
||
|
import os
|
||
|
# data: q, cq, (dq), (pq), y, *x, *cx
|
||
|
# shared: x, cx, (dx), (px), word_counter, char_counter, word2vec
|
||
|
# no metadata
|
||
|
from collections import Counter
|
||
|
|
||
|
import nltk
|
||
|
from tqdm import tqdm
|
||
|
|
||
|
from my.nltk_utils import load_compressed_tree
|
||
|
|
||
|
|
||
|
def bool_(arg):
|
||
|
if arg == 'True':
|
||
|
return True
|
||
|
elif arg == 'False':
|
||
|
return False
|
||
|
raise Exception()
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args = get_args()
|
||
|
prepro(args)
|
||
|
|
||
|
|
||
|
def get_args():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
home = os.path.expanduser("~")
|
||
|
source_dir = os.path.join(home, "data", "squad")
|
||
|
target_dir = "data/squad"
|
||
|
glove_dir = os.path.join(home, "data", "glove")
|
||
|
parser.add_argument("--source_dir", default=source_dir)
|
||
|
parser.add_argument("--target_dir", default=target_dir)
|
||
|
parser.add_argument("--debug", default=False, type=bool_)
|
||
|
parser.add_argument("--train_ratio", default=0.9, type=int)
|
||
|
parser.add_argument("--glove_corpus", default="6B")
|
||
|
parser.add_argument("--glove_dir", default=glove_dir)
|
||
|
parser.add_argument("--glove_vec_size", default=100, type=int)
|
||
|
parser.add_argument("--full_train", default=False, type=bool_)
|
||
|
# TODO : put more args here
|
||
|
return parser.parse_args()
|
||
|
|
||
|
|
||
|
def prepro(args):
|
||
|
if not os.path.exists(args.target_dir):
|
||
|
os.makedirs(args.target_dir)
|
||
|
|
||
|
if args.full_train:
|
||
|
data_train, shared_train = prepro_each(args, 'train')
|
||
|
data_dev, shared_dev = prepro_each(args, 'dev')
|
||
|
else:
|
||
|
data_train, shared_train = prepro_each(args, 'train', 0.0, args.train_ratio)
|
||
|
data_dev, shared_dev = prepro_each(args, 'train', args.train_ratio, 1.0)
|
||
|
data_test, shared_test = prepro_each(args, 'dev')
|
||
|
|
||
|
print("saving ...")
|
||
|
save(args, data_train, shared_train, 'train')
|
||
|
save(args, data_dev, shared_dev, 'dev')
|
||
|
save(args, data_test, shared_test, 'test')
|
||
|
|
||
|
|
||
|
def save(args, data, shared, data_type):
|
||
|
data_path = os.path.join(args.target_dir, "data_{}.json".format(data_type))
|
||
|
shared_path = os.path.join(args.target_dir, "shared_{}.json".format(data_type))
|
||
|
json.dump(data, open(data_path, 'w'))
|
||
|
json.dump(shared, open(shared_path, 'w'))
|
||
|
|
||
|
|
||
|
def get_word2vec(args, word_counter):
|
||
|
glove_path = os.path.join(args.glove_dir, "glove.{}.{}d.txt".format(args.glove_corpus, args.glove_vec_size))
|
||
|
sizes = {'6B': int(4e5), '42B': int(1.9e6), '840B': int(2.2e6), '2B': int(1.2e6)}
|
||
|
total = sizes[args.glove_corpus]
|
||
|
word2vec_dict = {}
|
||
|
with open(glove_path, 'r') as fh:
|
||
|
for line in tqdm(fh, total=total):
|
||
|
array = line.lstrip().rstrip().split(" ")
|
||
|
word = array[0]
|
||
|
vector = list(map(float, array[1:]))
|
||
|
if word in word_counter:
|
||
|
word2vec_dict[word] = vector
|
||
|
elif word.capitalize() in word_counter:
|
||
|
word2vec_dict[word.capitalize()] = vector
|
||
|
elif word.lower() in word_counter:
|
||
|
word2vec_dict[word.lower()] = vector
|
||
|
elif word.upper() in word_counter:
|
||
|
word2vec_dict[word.upper()] = vector
|
||
|
|
||
|
print("{}/{} of word vocab have corresponding vectors in {}".format(len(word2vec_dict), len(word_counter), glove_path))
|
||
|
return word2vec_dict
|
||
|
|
||
|
|
||
|
def prepro_each(args, data_type, start_ratio=0.0, stop_ratio=1.0):
|
||
|
source_path = os.path.join(args.source_dir, "{}-v1.0-aug.json".format(data_type))
|
||
|
source_data = json.load(open(source_path, 'r'))
|
||
|
|
||
|
q, cq, y, rx, rcx, ids, idxs = [], [], [], [], [], [], []
|
||
|
x, cx, tx, stx = [], [], [], []
|
||
|
answerss = []
|
||
|
word_counter, char_counter, lower_word_counter = Counter(), Counter(), Counter()
|
||
|
pos_counter = Counter()
|
||
|
start_ai = int(round(len(source_data['data']) * start_ratio))
|
||
|
stop_ai = int(round(len(source_data['data']) * stop_ratio))
|
||
|
for ai, article in enumerate(tqdm(source_data['data'][start_ai:stop_ai])):
|
||
|
xp, cxp, txp, stxp = [], [], [], []
|
||
|
x.append(xp)
|
||
|
cx.append(cxp)
|
||
|
tx.append(txp)
|
||
|
stx.append(stxp)
|
||
|
for pi, para in enumerate(article['paragraphs']):
|
||
|
xi = []
|
||
|
for dep in para['deps']:
|
||
|
if dep is None:
|
||
|
xi.append([])
|
||
|
else:
|
||
|
xi.append([node[0] for node in dep[0]])
|
||
|
cxi = [[list(xijk) for xijk in xij] for xij in xi]
|
||
|
xp.append(xi)
|
||
|
cxp.append(cxi)
|
||
|
txp.append(para['consts'])
|
||
|
stxp.append([str(load_compressed_tree(s)) for s in para['consts']])
|
||
|
trees = map(nltk.tree.Tree.fromstring, para['consts'])
|
||
|
for tree in trees:
|
||
|
for subtree in tree.subtrees():
|
||
|
pos_counter[subtree.label()] += 1
|
||
|
|
||
|
for xij in xi:
|
||
|
for xijk in xij:
|
||
|
word_counter[xijk] += len(para['qas'])
|
||
|
lower_word_counter[xijk.lower()] += len(para['qas'])
|
||
|
for xijkl in xijk:
|
||
|
char_counter[xijkl] += len(para['qas'])
|
||
|
|
||
|
rxi = [ai, pi]
|
||
|
assert len(x) - 1 == ai
|
||
|
assert len(x[ai]) - 1 == pi
|
||
|
for qa in para['qas']:
|
||
|
dep = qa['dep']
|
||
|
qi = [] if dep is None else [node[0] for node in dep[0]]
|
||
|
cqi = [list(qij) for qij in qi]
|
||
|
yi = []
|
||
|
answers = []
|
||
|
for answer in qa['answers']:
|
||
|
answers.append(answer['text'])
|
||
|
yi0 = answer['answer_word_start'] or [0, 0]
|
||
|
yi1 = answer['answer_word_stop'] or [0, 1]
|
||
|
assert len(xi[yi0[0]]) > yi0[1]
|
||
|
assert len(xi[yi1[0]]) >= yi1[1]
|
||
|
yi.append([yi0, yi1])
|
||
|
|
||
|
for qij in qi:
|
||
|
word_counter[qij] += 1
|
||
|
lower_word_counter[qij.lower()] += 1
|
||
|
for qijk in qij:
|
||
|
char_counter[qijk] += 1
|
||
|
|
||
|
q.append(qi)
|
||
|
cq.append(cqi)
|
||
|
y.append(yi)
|
||
|
rx.append(rxi)
|
||
|
rcx.append(rxi)
|
||
|
ids.append(qa['id'])
|
||
|
idxs.append(len(idxs))
|
||
|
answerss.append(answers)
|
||
|
|
||
|
if args.debug:
|
||
|
break
|
||
|
|
||
|
word2vec_dict = get_word2vec(args, word_counter)
|
||
|
lower_word2vec_dict = get_word2vec(args, lower_word_counter)
|
||
|
|
||
|
data = {'q': q, 'cq': cq, 'y': y, '*x': rx, '*cx': rcx, '*tx': rx, '*stx': rx,
|
||
|
'idxs': idxs, 'ids': ids, 'answerss': answerss}
|
||
|
shared = {'x': x, 'cx': cx, 'tx': tx, 'stx': stx,
|
||
|
'word_counter': word_counter, 'char_counter': char_counter, 'lower_word_counter': lower_word_counter,
|
||
|
'word2vec': word2vec_dict, 'lower_word2vec': lower_word2vec_dict, 'pos_counter': pos_counter}
|
||
|
|
||
|
return data, shared
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|