dawn-bench-models/pytorch/CIFAR10/benchmark/cifar10/results.py

154 lines
4.8 KiB
Python
Raw Normal View History

import os
import json
import pandas as pd
from benchmark.cifar10.train import MODELS
from benchmark.utils import count_parameters
MODEL_SIZES = {key: count_parameters(MODELS[key]()) for key in MODELS.keys()}
def single_run_acc(df):
df = df.copy()
df['duration'] = (df['timestamp'] - df['prev_timestamp']).apply(lambda x: x.total_seconds())
df['batch_duration'] = df['batch_duration'].apply(lambda x: x.total_seconds())
tmp = df.loc[:, ['epoch', 'batch_size', 'ncorrect', 'duration', 'batch_duration']].groupby('epoch').sum()
tmp['accuracy'] = tmp['ncorrect'] / tmp['batch_size']
tmp['throughput'] = tmp['batch_size'] / tmp['duration']
tmp['_throughput'] = tmp['batch_size'] / tmp['batch_duration']
tmp['elapsed'] = df.groupby('epoch')['elapsed'].agg('max')
tmp.reset_index(inplace=True)
return tmp
def load_file(file, start_timestamp=None):
df = pd.read_csv(file)
df['timestamp'] = pd.to_datetime(df['timestamp'])
df['batch_duration'] = pd.to_timedelta(df['batch_duration'])
df['ncorrect'] = df['top1_correct']
start_timestamp = start_timestamp or df['timestamp'].iloc[0]
df['elapsed'] = df['timestamp'] - start_timestamp
df['batch_accuracy'] = df['ncorrect'] / df['batch_size']
return df
def load_data(directory, verbose=True):
train_file = os.path.join(directory, 'train_results.csv')
train = load_file(train_file)
start_timestamp = train['timestamp'].iloc[0]
if verbose:
print(train_file)
print("Training results shape: {}".format(train.shape))
try:
test_file = os.path.join(directory, 'test_results.csv')
test = load_file(test_file, start_timestamp=start_timestamp)
except FileNotFoundError:
test_file = os.path.join(directory, 'valid_results.csv')
test = load_file(test_file, start_timestamp=start_timestamp)
if verbose:
print(test_file)
print('Test results shape: {}'.format(test.shape))
train['mode'] = 'train'
test['mode'] = 'test'
combined = pd.concat([train, test], ignore_index=True).sort_values(by=['timestamp'])
combined['prev_timestamp'] = combined['timestamp'].shift(1)
combined.loc[0, 'prev_timestamp'] = combined.loc[0, 'timestamp'] - combined.loc[0, 'batch_duration']
train = combined[combined['mode'] == 'train'].copy()
test = combined[combined['mode'] == 'test'].copy()
return single_run_acc(train), single_run_acc(test)
def load_multiple(directory, timestamps=None, verbose=False):
timestamps = timestamps or os.listdir(directory)
train_sets = []
test_sets = []
for timestamp in sorted(timestamps):
_dir = os.path.join(directory, timestamp)
train, test = load_data(_dir, verbose=verbose)
if verbose:
print()
train['run'] = _dir
test['run'] = _dir
train['job_start'] = timestamp
test['job_start'] = timestamp
train_sets.append(train)
test_sets.append(test)
return pd.concat(train_sets), pd.concat(test_sets)
def load_multiple_models(directory, verbose=False):
paths = os.listdir(directory)
models = [path for path in paths if path in MODELS]
train_sets = []
test_sets = []
for model in sorted(models):
if verbose:
print(f"Loading {model}")
_dir = os.path.join(directory, model)
train, test = load_multiple(_dir, verbose=verbose)
train['model'] = model
train['nparameters'] = MODEL_SIZES[model]
test['model'] = model
test['nparameters'] = MODEL_SIZES[model]
train_sets.append(train)
test_sets.append(test)
return pd.concat(train_sets), pd.concat(test_sets)
def concat_update(existing, other, repeat=False):
for key in other.keys():
if key in existing:
if existing[key] != other[key] or repeat:
current = existing[key]
if isinstance(current, list):
current.append(other[key])
else:
existing[key] = [current, other[key]]
else:
existing[key] = other[key]
def run_config(run, repeat=False):
full = {}
configs = (os.path.join(run, entry.name) for entry in os.scandir(run) if 'config' in entry.name)
for config in sorted(configs):
with open(config) as file:
tmp = json.load(file)
tmp['path'] = config
concat_update(full, tmp, repeat=repeat)
return full
def search_configs(criteria, configs):
matches = []
for run, config in configs.items():
is_match = True
for key, value in criteria.items():
try:
config_value = config[key]
if config_value != value:
is_match = False
except KeyError:
is_match = False
if is_match:
matches.append(run)
return matches