37 lines
1.3 KiB
Python
37 lines
1.3 KiB
Python
|
import tensorflow as tf
|
||
|
|
||
|
from tree.model import Model
|
||
|
|
||
|
|
||
|
class Trainer(object):
|
||
|
def __init__(self, config, model):
|
||
|
assert isinstance(model, Model)
|
||
|
self.config = config
|
||
|
self.model = model
|
||
|
self.opt = tf.train.AdagradOptimizer(config.init_lr)
|
||
|
self.loss = model.get_loss()
|
||
|
self.var_list = model.get_var_list()
|
||
|
self.global_step = model.get_global_step()
|
||
|
self.ema_op = model.ema_op
|
||
|
self.summary = model.summary
|
||
|
self.grads = self.opt.compute_gradients(self.loss, var_list=self.var_list)
|
||
|
opt_op = self.opt.apply_gradients(self.grads, global_step=self.global_step)
|
||
|
|
||
|
# Define train op
|
||
|
with tf.control_dependencies([opt_op]):
|
||
|
self.train_op = tf.group(self.ema_op)
|
||
|
|
||
|
def get_train_op(self):
|
||
|
return self.train_op
|
||
|
|
||
|
def step(self, sess, batch, get_summary=False):
|
||
|
assert isinstance(sess, tf.Session)
|
||
|
feed_dict = self.model.get_feed_dict(batch, True)
|
||
|
if get_summary:
|
||
|
loss, summary, train_op = \
|
||
|
sess.run([self.loss, self.summary, self.train_op], feed_dict=feed_dict)
|
||
|
else:
|
||
|
loss, train_op = sess.run([self.loss, self.train_op], feed_dict=feed_dict)
|
||
|
summary = None
|
||
|
return loss, summary, train_op
|