diff --git a/pytorch/CIFAR10/README.md b/pytorch/CIFAR10/README.md new file mode 100644 index 0000000..bbf70e0 --- /dev/null +++ b/pytorch/CIFAR10/README.md @@ -0,0 +1,36 @@ +# Install + +1. Install PyTorch v0.1.12. If you don't already have it set up, [please follow the official install instructions](http://pytorch.org/). +2. Clone this repo and go to this directory + +```bash +git clone git@github.com:stanford-futuredata/dawn-bench-models.git +cd dawn-bench-models/pytorch/CIFAR10 +``` + +3. Install this package + +```bash +pip install -e . +``` + +# Quick start + +This package adds cifar10 and imagenet command line interfaces. +Both include the train subcommands to learn a model from scratch. +As an example, here is how to train ResNet164 with preactivation on CIFAR10: + +```bash +cifar10 train -c last --augmentation --tracking -b 128 --optimizer sgd --arch preact164 -e 5 -l 0.01 +cifar10 train -c last --augmentation --tracking -b 128 --optimizer sgd --arch preact164 -e 90 -l 0.1 --restore latest +cifar10 train -c last --augmentation --tracking -b 128 --optimizer sgd --arch preact164 -e 45 -l 0.01 --restore latest +cifar10 train -c last --augmentation --tracking -b 128 --optimizer sgd --arch preact164 -e 45 -l 0.001 --restore latest +``` + +The first command creates a new run of ResNet164 with preactivation (`--arch preact164`) in the `./run/preact164/[TIMESTAMP]` directory and starts a warm up of 5 epochs (`-e 5`) with SGD (`--optimizer sgd`) and a learning rate of 0.01 (`-l 0.01`). +`-c last` indicates that we only want to save a checkpoint after the last epoch of the warm up. +`-b 128` sets the batch size to 128. +`--augmentation` turns on standard data augmentation, i.e. random crop and flip. +`--tracking` saves training and validation results to csv files at `./run/preact164/[TIMESTAMP]/[train|valid]_results.csv` + +The second command resumes the run from the first command (`--restore latest`) for another 90 epochs (`-e 90`) but with a new learning rate (`-l 0.1`). The third and fourth commands function similarly to the second command, changing the learning rate and running for more epochs.