""" Official evaluation script for v1.1 of the SQuAD dataset. [Changed name for external importing]""" from __future__ import print_function from collections import Counter import string import re import argparse import json import sys def normalize_answer(s): """Lower text and remove punctuation, articles and extra whitespace.""" def remove_articles(text): return re.sub(r'\b(a|an|the)\b', ' ', text) def white_space_fix(text): return ' '.join(text.split()) def remove_punc(text): exclude = set(string.punctuation) return ''.join(ch for ch in text if ch not in exclude) def lower(text): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(s)))) def f1_score(prediction, ground_truth): prediction_tokens = normalize_answer(prediction).split() ground_truth_tokens = normalize_answer(ground_truth).split() common = Counter(prediction_tokens) & Counter(ground_truth_tokens) num_same = sum(common.values()) if num_same == 0: return 0 precision = 1.0 * num_same / len(prediction_tokens) recall = 1.0 * num_same / len(ground_truth_tokens) f1 = (2 * precision * recall) / (precision + recall) return f1 def exact_match_score(prediction, ground_truth): return (normalize_answer(prediction) == normalize_answer(ground_truth)) def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): scores_for_ground_truths = [] for ground_truth in ground_truths: score = metric_fn(prediction, ground_truth) scores_for_ground_truths.append(score) return max(scores_for_ground_truths) def evaluate(dataset, predictions): f1 = exact_match = total = 0 for article in dataset: for paragraph in article['paragraphs']: for qa in paragraph['qas']: total += 1 if qa['id'] not in predictions: message = 'Unanswered question ' + qa['id'] + \ ' will receive score 0.' print(message, file=sys.stderr) continue ground_truths = list(map(lambda x: x['text'], qa['answers'])) prediction = predictions[qa['id']] exact_match += metric_max_over_ground_truths( exact_match_score, prediction, ground_truths) f1 += metric_max_over_ground_truths( f1_score, prediction, ground_truths) exact_match = 100.0 * exact_match / total f1 = 100.0 * f1 / total return {'exact_match': exact_match, 'f1': f1} if __name__ == '__main__': expected_version = '1.1' parser = argparse.ArgumentParser( description='Evaluation for SQuAD ' + expected_version) parser.add_argument('dataset_file', help='Dataset file') parser.add_argument('prediction_file', help='Prediction File') args = parser.parse_args() with open(args.dataset_file) as dataset_file: dataset_json = json.load(dataset_file) if (dataset_json['version'] != expected_version): print('Evaluation expects v-' + expected_version + ', but got dataset with v-' + dataset_json['version'], file=sys.stderr) dataset = dataset_json['data'] with open(args.prediction_file) as prediction_file: predictions = json.load(prediction_file) print(json.dumps(evaluate(dataset, predictions)))