import tensorflow as tf from tree.model import Model class Trainer(object): def __init__(self, config, model): assert isinstance(model, Model) self.config = config self.model = model self.opt = tf.train.AdagradOptimizer(config.init_lr) self.loss = model.get_loss() self.var_list = model.get_var_list() self.global_step = model.get_global_step() self.ema_op = model.ema_op self.summary = model.summary self.grads = self.opt.compute_gradients(self.loss, var_list=self.var_list) opt_op = self.opt.apply_gradients(self.grads, global_step=self.global_step) # Define train op with tf.control_dependencies([opt_op]): self.train_op = tf.group(self.ema_op) def get_train_op(self): return self.train_op def step(self, sess, batch, get_summary=False): assert isinstance(sess, tf.Session) feed_dict = self.model.get_feed_dict(batch, True) if get_summary: loss, summary, train_op = \ sess.run([self.loss, self.summary, self.train_op], feed_dict=feed_dict) else: loss, train_op = sess.run([self.loss, self.train_op], feed_dict=feed_dict) summary = None return loss, summary, train_op