# ResNet on CIFAR10 and CIFAR100 (Borrowed from the tensorflow/models repository) ## Dataset https://www.cs.toronto.edu/~kriz/cifar.html ## Related papers - [Identity Mappings in Deep Residual Networks](https://arxiv.org/pdf/1603.05027v2.pdf) - [Deep Residual Learning for Image Recognition](https://arxiv.org/pdf/1512.03385v1.pdf) - [Wide Residual Networks](https://arxiv.org/pdf/1605.07146v1.pdf) ## Setting * Pad to 36x36 and random crop. Horizontal flip. Per-image whitening. * Momentum optimizer (momentum = 0.9). * Learning rate schedule: 0.01 (1 epoch), 0.1 (90 epochs), 0.01 (45 epochs), 0.001 (45 epochs). * L2 weight decay: 0.005. * Batch size: 128. (28-10 wide and 1001 layer bottleneck use 64) ## Results CIFAR-10 Model|Best Precision|Steps --------------|--------------|------ 32 layer|92.5%|~80k 110 layer|93.6%|~80k 164 layer bottleneck|94.5%|~80k 1001 layer bottleneck|94.9%|~80k 28-10 wide|95%|~90k CIFAR-100 Model|Best Precision|Steps ---------------|--------------|----- 32 layer|68.1%|~45k 110 layer|71.3%|~60k 164 layer bottleneck|75.7%|~50k 1001 layer bottleneck|78.2%|~70k 28-10 wide|78.3%|~70k ## Prerequisites 1. Install TensorFlow 1.2 (preferably from source for higher performance) and Python 3.6.2. 2. Download CIFAR-10/CIFAR-100 dataset. ```shell curl -o cifar-10-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz curl -o cifar-100-binary.tar.gz https://www.cs.toronto.edu/~kriz/cifar-100-binary.tar.gz ``` ## How to run ```shell # cd to the models repository and run with bash. Expected command output shown. # The directory should contain an empty WORKSPACE file, the resnet code, and the cifar10 dataset. # Note: The user can split 5k from train set for eval set. $ ls -R .: cifar10 resnet WORKSPACE ./cifar10: data_batch_1.bin data_batch_2.bin data_batch_3.bin data_batch_4.bin data_batch_5.bin test_batch.bin ./resnet: cifar_input.py README.md resnet_main.py resnet_model.py # Train the model. $ python3 resnet/resnet_main.py --train_data_path=cifar10/data_batch* \ --log_root=/tmp/resnet_model \ --train_dir=/tmp/resnet_model/train \ --dataset='cifar10' \ --num_gpus=1 # While the model is training, you can also check on its progress using tensorboard: $ tensorboard --logdir=/tmp/resnet_model # Evaluate the model. # Avoid running on the same GPU as the training job at the same time, # otherwise, you might run out of memory. $ python3 resnet/resnet_main.py --eval_data_path=cifar10/test_batch.bin \ --log_root=/tmp/resnet_model \ --eval_dir=/tmp/resnet_model/test \ --mode=eval \ --dataset='cifar10' \ --num_gpus=0 ```