# Install 1. Install PyTorch v0.1.12. If you don't already have it set up, [please follow the official install instructions](http://pytorch.org/). 2. Clone this repo and go to this directory ```bash git clone git@github.com:stanford-futuredata/dawn-bench-models.git cd dawn-bench-models/pytorch/CIFAR10 ``` 3. Install this package ```bash pip install -e . ``` # Quick start This package adds cifar10 and imagenet command line interfaces. Both include the train subcommands to learn a model from scratch. As an example, here is how to train ResNet164 with preactivation on CIFAR10: ```bash cifar10 train -c last --augmentation --tracking -b 128 --optimizer sgd --arch preact164 -e 5 -l 0.01 cifar10 train -c last --augmentation --tracking -b 128 --optimizer sgd --arch preact164 -e 90 -l 0.1 --restore latest cifar10 train -c last --augmentation --tracking -b 128 --optimizer sgd --arch preact164 -e 45 -l 0.01 --restore latest cifar10 train -c last --augmentation --tracking -b 128 --optimizer sgd --arch preact164 -e 45 -l 0.001 --restore latest ``` The first command creates a new run of ResNet164 with preactivation (`--arch preact164`) in the `./run/preact164/[TIMESTAMP]` directory and starts a warm up of 5 epochs (`-e 5`) with SGD (`--optimizer sgd`) and a learning rate of 0.01 (`-l 0.01`). `-c last` indicates that we only want to save a checkpoint after the last epoch of the warm up. `-b 128` sets the batch size to 128. `--augmentation` turns on standard data augmentation, i.e. random crop and flip. `--tracking` saves training and validation results to csv files at `./run/preact164/[TIMESTAMP]/[train|valid]_results.csv` The second command resumes the run from the first command (`--restore latest`) for another 90 epochs (`-e 90`) but with a new learning rate (`-l 0.1`). The third and fourth commands function similarly to the second command, changing the learning rate and running for more epochs.