187 lines
6.5 KiB
Python
187 lines
6.5 KiB
Python
import argparse
|
|
import json
|
|
import math
|
|
import os
|
|
import shutil
|
|
from pprint import pprint
|
|
|
|
import tensorflow as tf
|
|
from tqdm import tqdm
|
|
import numpy as np
|
|
|
|
from tree.evaluator import AccuracyEvaluator2, Evaluator
|
|
from tree.graph_handler import GraphHandler
|
|
from tree.model import Model
|
|
from tree.trainer import Trainer
|
|
|
|
from tree.read_data import load_metadata, read_data, get_squad_data_filter, update_config
|
|
|
|
|
|
def main(config):
|
|
set_dirs(config)
|
|
if config.mode == 'train':
|
|
_train(config)
|
|
elif config.mode == 'test':
|
|
_test(config)
|
|
elif config.mode == 'forward':
|
|
_forward(config)
|
|
else:
|
|
raise ValueError("invalid value for 'mode': {}".format(config.mode))
|
|
|
|
|
|
def _config_draft(config):
|
|
if config.draft:
|
|
config.num_steps = 10
|
|
config.eval_period = 10
|
|
config.log_period = 1
|
|
config.save_period = 10
|
|
config.eval_num_batches = 1
|
|
|
|
|
|
def _train(config):
|
|
# load_metadata(config, 'train') # this updates the config file according to metadata file
|
|
|
|
data_filter = get_squad_data_filter(config)
|
|
train_data = read_data(config, 'train', config.load, data_filter=data_filter)
|
|
dev_data = read_data(config, 'dev', True, data_filter=data_filter)
|
|
update_config(config, [train_data, dev_data])
|
|
|
|
_config_draft(config)
|
|
|
|
word2vec_dict = train_data.shared['lower_word2vec'] if config.lower_word else train_data.shared['word2vec']
|
|
word2idx_dict = train_data.shared['word2idx']
|
|
idx2vec_dict = {word2idx_dict[word]: vec for word, vec in word2vec_dict.items() if word in word2idx_dict}
|
|
print("{}/{} unique words have corresponding glove vectors.".format(len(idx2vec_dict), len(word2idx_dict)))
|
|
emb_mat = np.array([idx2vec_dict[idx] if idx in idx2vec_dict
|
|
else np.random.multivariate_normal(np.zeros(config.word_emb_size), np.eye(config.word_emb_size))
|
|
for idx in range(config.word_vocab_size)])
|
|
config.emb_mat = emb_mat
|
|
|
|
# construct model graph and variables (using default graph)
|
|
pprint(config.__flags, indent=2)
|
|
model = Model(config)
|
|
trainer = Trainer(config, model)
|
|
evaluator = AccuracyEvaluator2(config, model)
|
|
graph_handler = GraphHandler(config) # controls all tensors and variables in the graph, including loading /saving
|
|
|
|
# Variables
|
|
sess = tf.Session()
|
|
graph_handler.initialize(sess)
|
|
|
|
# begin training
|
|
num_steps = config.num_steps or int(config.num_epochs * train_data.num_examples / config.batch_size)
|
|
max_acc = 0
|
|
noupdate_count = 0
|
|
global_step = 0
|
|
for _, batch in tqdm(train_data.get_batches(config.batch_size, num_batches=num_steps, shuffle=True), total=num_steps):
|
|
global_step = sess.run(model.global_step) + 1 # +1 because all calculations are done after step
|
|
get_summary = global_step % config.log_period == 0
|
|
loss, summary, train_op = trainer.step(sess, batch, get_summary=get_summary)
|
|
if get_summary:
|
|
graph_handler.add_summary(summary, global_step)
|
|
|
|
# Occasional evaluation and saving
|
|
if global_step % config.save_period == 0:
|
|
graph_handler.save(sess, global_step=global_step)
|
|
if global_step % config.eval_period == 0:
|
|
num_batches = math.ceil(dev_data.num_examples / config.batch_size)
|
|
if 0 < config.eval_num_batches < num_batches:
|
|
num_batches = config.eval_num_batches
|
|
e = evaluator.get_evaluation_from_batches(
|
|
sess, tqdm(dev_data.get_batches(config.batch_size, num_batches=num_batches), total=num_batches))
|
|
graph_handler.add_summaries(e.summaries, global_step)
|
|
if e.acc > max_acc:
|
|
max_acc = e.acc
|
|
noupdate_count = 0
|
|
else:
|
|
noupdate_count += 1
|
|
if noupdate_count == config.early_stop:
|
|
break
|
|
if config.dump_eval:
|
|
graph_handler.dump_eval(e)
|
|
if global_step % config.save_period != 0:
|
|
graph_handler.save(sess, global_step=global_step)
|
|
|
|
|
|
def _test(config):
|
|
test_data = read_data(config, 'test', True)
|
|
update_config(config, [test_data])
|
|
|
|
_config_draft(config)
|
|
|
|
pprint(config.__flags, indent=2)
|
|
model = Model(config)
|
|
evaluator = AccuracyEvaluator2(config, model)
|
|
graph_handler = GraphHandler(config) # controls all tensors and variables in the graph, including loading /saving
|
|
|
|
sess = tf.Session()
|
|
graph_handler.initialize(sess)
|
|
|
|
num_batches = math.ceil(test_data.num_examples / config.batch_size)
|
|
if 0 < config.eval_num_batches < num_batches:
|
|
num_batches = config.eval_num_batches
|
|
e = evaluator.get_evaluation_from_batches(sess, tqdm(test_data.get_batches(config.batch_size, num_batches=num_batches), total=num_batches))
|
|
print(e)
|
|
if config.dump_eval:
|
|
graph_handler.dump_eval(e)
|
|
|
|
|
|
def _forward(config):
|
|
|
|
forward_data = read_data(config, 'forward', True)
|
|
|
|
_config_draft(config)
|
|
|
|
pprint(config.__flag, indent=2)
|
|
model = Model(config)
|
|
evaluator = Evaluator(config, model)
|
|
graph_handler = GraphHandler(config) # controls all tensors and variables in the graph, including loading /saving
|
|
|
|
sess = tf.Session()
|
|
graph_handler.initialize(sess)
|
|
|
|
num_batches = math.ceil(forward_data.num_examples / config.batch_size)
|
|
if 0 < config.eval_num_batches < num_batches:
|
|
num_batches = config.eval_num_batches
|
|
e = evaluator.get_evaluation_from_batches(sess, tqdm(forward_data.get_batches(config.batch_size, num_batches=num_batches), total=num_batches))
|
|
print(e)
|
|
if config.dump_eval:
|
|
graph_handler.dump_eval(e)
|
|
|
|
|
|
def set_dirs(config):
|
|
# create directories
|
|
if not config.load and os.path.exists(config.out_dir):
|
|
shutil.rmtree(config.out_dir)
|
|
|
|
config.save_dir = os.path.join(config.out_dir, "save")
|
|
config.log_dir = os.path.join(config.out_dir, "log")
|
|
config.eval_dir = os.path.join(config.out_dir, "eval")
|
|
if not os.path.exists(config.out_dir):
|
|
os.makedirs(config.out_dir)
|
|
if not os.path.exists(config.save_dir):
|
|
os.mkdir(config.save_dir)
|
|
if not os.path.exists(config.log_dir):
|
|
os.mkdir(config.eval_dir)
|
|
|
|
|
|
def _get_args():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("config_path")
|
|
return parser.parse_args()
|
|
|
|
|
|
class Config(object):
|
|
def __init__(self, **entries):
|
|
self.__dict__.update(entries)
|
|
|
|
|
|
def _run():
|
|
args = _get_args()
|
|
with open(args.config_path, 'r') as fh:
|
|
config = Config(**json.load(fh))
|
|
main(config)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
_run()
|