dawn-bench-models/tensorflow/SQuAD/basic/model.py
Deepak Narayanan b7e1e0fa0f First commit
2017-08-17 11:43:17 -07:00

535 lines
25 KiB
Python

import random
import itertools
import numpy as np
import tensorflow as tf
from tensorflow.contrib.rnn import BasicLSTMCell
from basic.read_data import DataSet
from my.tensorflow import get_initializer
from my.tensorflow.nn import softsel, get_logits, highway_network, multi_conv1d
from my.tensorflow.rnn import bidirectional_dynamic_rnn
from my.tensorflow.rnn_cell import SwitchableDropoutWrapper, AttentionCell
def get_multi_gpu_models(config):
models = []
with tf.variable_scope(tf.get_variable_scope()):
for gpu_idx in range(config.num_gpus):
with tf.name_scope("model_{}".format(gpu_idx)) as scope, tf.device("/{}:{}".format(config.device_type, gpu_idx)):
if gpu_idx > 0:
tf.get_variable_scope().reuse_variables()
model = Model(config, scope, rep=gpu_idx == 0)
models.append(model)
# update the summary in a different scope to avoid reuse issue
with tf.variable_scope('loss_summary', reuse=False):
for gpu_idx in range(config.num_gpus):
with tf.name_scope("model_{}".format(gpu_idx)) as scope, tf.device("/{}:{}".format(config.device_type, gpu_idx)):
model = models[gpu_idx]
rep = gpu_idx == 0
if rep:
model._build_var_ema()
if config.mode == 'train':
model._build_ema();
model.summary = tf.summary.merge_all()
model.summary = tf.summary.merge(tf.get_collection("summaries", scope=model.scope))
return models
class Model(object):
def __init__(self, config, scope, rep=True):
self.scope = scope
self.config = config
self.global_step = tf.get_variable('global_step', shape=[], dtype='int32',
initializer=tf.constant_initializer(0), trainable=False)
# Define forward inputs here
N, M, JX, JQ, VW, VC, W = \
config.batch_size, config.max_num_sents, config.max_sent_size, \
config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.max_word_size
self.x = tf.placeholder('int32', [N, None, None], name='x')
self.cx = tf.placeholder('int32', [N, None, None, W], name='cx')
self.x_mask = tf.placeholder('bool', [N, None, None], name='x_mask')
self.q = tf.placeholder('int32', [N, None], name='q')
self.cq = tf.placeholder('int32', [N, None, W], name='cq')
self.q_mask = tf.placeholder('bool', [N, None], name='q_mask')
self.y = tf.placeholder('bool', [N, None, None], name='y')
self.y2 = tf.placeholder('bool', [N, None, None], name='y2')
self.wy = tf.placeholder('bool', [N, None, None], name='wy')
self.is_train = tf.placeholder('bool', [], name='is_train')
self.new_emb_mat = tf.placeholder('float', [None, config.word_emb_size], name='new_emb_mat')
self.na = tf.placeholder('bool', [N], name='na')
# Define misc
self.tensor_dict = {}
# Forward outputs / loss inputs
self.logits = None
self.yp = None
self.var_list = None
self.na_prob = None
# Loss outputs
self.loss = None
self._build_forward()
self._build_loss()
self.var_ema = None
# if rep:
# self._build_var_ema()
# if config.mode == 'train':
# self._build_ema()
# self.summary = tf.summary.merge_all()
# self.summary = tf.summary.merge(tf.get_collection("summaries", scope=self.scope))
def _build_forward(self):
config = self.config
N, M, JX, JQ, VW, VC, d, W = \
config.batch_size, config.max_num_sents, config.max_sent_size, \
config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.hidden_size, \
config.max_word_size
JX = tf.shape(self.x)[2]
JQ = tf.shape(self.q)[1]
M = tf.shape(self.x)[1]
dc, dw, dco = config.char_emb_size, config.word_emb_size, config.char_out_size
with tf.variable_scope("emb"):
if config.use_char_emb:
with tf.variable_scope("emb_var"), tf.device("/cpu:0"):
char_emb_mat = tf.get_variable("char_emb_mat", shape=[VC, dc], dtype='float')
with tf.variable_scope("char"):
Acx = tf.nn.embedding_lookup(char_emb_mat, self.cx) # [N, M, JX, W, dc]
Acq = tf.nn.embedding_lookup(char_emb_mat, self.cq) # [N, JQ, W, dc]
Acx = tf.reshape(Acx, [-1, JX, W, dc])
Acq = tf.reshape(Acq, [-1, JQ, W, dc])
filter_sizes = list(map(int, config.out_channel_dims.split(',')))
heights = list(map(int, config.filter_heights.split(',')))
assert sum(filter_sizes) == dco, (filter_sizes, dco)
with tf.variable_scope("conv"):
xx = multi_conv1d(Acx, filter_sizes, heights, "VALID", self.is_train, config.keep_prob, scope="xx")
if config.share_cnn_weights:
tf.get_variable_scope().reuse_variables()
qq = multi_conv1d(Acq, filter_sizes, heights, "VALID", self.is_train, config.keep_prob, scope="xx")
else:
qq = multi_conv1d(Acq, filter_sizes, heights, "VALID", self.is_train, config.keep_prob, scope="qq")
xx = tf.reshape(xx, [-1, M, JX, dco])
qq = tf.reshape(qq, [-1, JQ, dco])
if config.use_word_emb:
with tf.variable_scope("emb_var"), tf.device("/cpu:0"):
if config.mode == 'train':
word_emb_mat = tf.get_variable("word_emb_mat", dtype='float', shape=[VW, dw], initializer=get_initializer(config.emb_mat))
else:
word_emb_mat = tf.get_variable("word_emb_mat", shape=[VW, dw], dtype='float')
if config.use_glove_for_unk:
word_emb_mat = tf.concat(axis=0, values=[word_emb_mat, self.new_emb_mat])
with tf.name_scope("word"):
Ax = tf.nn.embedding_lookup(word_emb_mat, self.x) # [N, M, JX, d]
Aq = tf.nn.embedding_lookup(word_emb_mat, self.q) # [N, JQ, d]
self.tensor_dict['x'] = Ax
self.tensor_dict['q'] = Aq
if config.use_char_emb:
xx = tf.concat(axis=3, values=[xx, Ax]) # [N, M, JX, di]
qq = tf.concat(axis=2, values=[qq, Aq]) # [N, JQ, di]
else:
xx = Ax
qq = Aq
# highway network
if config.highway:
with tf.variable_scope("highway"):
xx = highway_network(xx, config.highway_num_layers, True, wd=config.wd, is_train=self.is_train)
tf.get_variable_scope().reuse_variables()
qq = highway_network(qq, config.highway_num_layers, True, wd=config.wd, is_train=self.is_train)
self.tensor_dict['xx'] = xx
self.tensor_dict['qq'] = qq
cell_fw = BasicLSTMCell(d, state_is_tuple=True)
cell_bw = BasicLSTMCell(d, state_is_tuple=True)
d_cell_fw = SwitchableDropoutWrapper(cell_fw, self.is_train, input_keep_prob=config.input_keep_prob)
d_cell_bw = SwitchableDropoutWrapper(cell_bw, self.is_train, input_keep_prob=config.input_keep_prob)
cell2_fw = BasicLSTMCell(d, state_is_tuple=True)
cell2_bw = BasicLSTMCell(d, state_is_tuple=True)
d_cell2_fw = SwitchableDropoutWrapper(cell2_fw, self.is_train, input_keep_prob=config.input_keep_prob)
d_cell2_bw = SwitchableDropoutWrapper(cell2_bw, self.is_train, input_keep_prob=config.input_keep_prob)
cell3_fw = BasicLSTMCell(d, state_is_tuple=True)
cell3_bw = BasicLSTMCell(d, state_is_tuple=True)
d_cell3_fw = SwitchableDropoutWrapper(cell3_fw, self.is_train, input_keep_prob=config.input_keep_prob)
d_cell3_bw = SwitchableDropoutWrapper(cell3_bw, self.is_train, input_keep_prob=config.input_keep_prob)
cell4_fw = BasicLSTMCell(d, state_is_tuple=True)
cell4_bw = BasicLSTMCell(d, state_is_tuple=True)
d_cell4_fw = SwitchableDropoutWrapper(cell4_fw, self.is_train, input_keep_prob=config.input_keep_prob)
d_cell4_bw = SwitchableDropoutWrapper(cell4_bw, self.is_train, input_keep_prob=config.input_keep_prob)
x_len = tf.reduce_sum(tf.cast(self.x_mask, 'int32'), 2) # [N, M]
q_len = tf.reduce_sum(tf.cast(self.q_mask, 'int32'), 1) # [N]
with tf.variable_scope("prepro"):
(fw_u, bw_u), ((_, fw_u_f), (_, bw_u_f)) = bidirectional_dynamic_rnn(d_cell_fw, d_cell_bw, qq, q_len, dtype='float', scope='u1') # [N, J, d], [N, d]
u = tf.concat(axis=2, values=[fw_u, bw_u])
if config.share_lstm_weights:
tf.get_variable_scope().reuse_variables()
(fw_h, bw_h), _ = bidirectional_dynamic_rnn(cell_fw, cell_bw, xx, x_len, dtype='float', scope='u1') # [N, M, JX, 2d]
h = tf.concat(axis=3, values=[fw_h, bw_h]) # [N, M, JX, 2d]
else:
(fw_h, bw_h), _ = bidirectional_dynamic_rnn(cell_fw, cell_bw, xx, x_len, dtype='float', scope='h1') # [N, M, JX, 2d]
h = tf.concat(axis=3, values=[fw_h, bw_h]) # [N, M, JX, 2d]
self.tensor_dict['u'] = u
self.tensor_dict['h'] = h
with tf.variable_scope("main"):
if config.dynamic_att:
p0 = h
u = tf.reshape(tf.tile(tf.expand_dims(u, 1), [1, M, 1, 1]), [N * M, JQ, 2 * d])
q_mask = tf.reshape(tf.tile(tf.expand_dims(self.q_mask, 1), [1, M, 1]), [N * M, JQ])
first_cell_fw = AttentionCell(cell2_fw, u, mask=q_mask, mapper='sim',
input_keep_prob=self.config.input_keep_prob, is_train=self.is_train)
first_cell_bw = AttentionCell(cell2_bw, u, mask=q_mask, mapper='sim',
input_keep_prob=self.config.input_keep_prob, is_train=self.is_train)
second_cell_fw = AttentionCell(cell3_fw, u, mask=q_mask, mapper='sim',
input_keep_prob=self.config.input_keep_prob, is_train=self.is_train)
second_cell_bw = AttentionCell(cell3_bw, u, mask=q_mask, mapper='sim',
input_keep_prob=self.config.input_keep_prob, is_train=self.is_train)
else:
p0 = attention_layer(config, self.is_train, h, u, h_mask=self.x_mask, u_mask=self.q_mask, scope="p0", tensor_dict=self.tensor_dict)
first_cell_fw = d_cell2_fw
second_cell_fw = d_cell3_fw
first_cell_bw = d_cell2_bw
second_cell_bw = d_cell3_bw
(fw_g0, bw_g0), _ = bidirectional_dynamic_rnn(first_cell_fw, first_cell_bw, p0, x_len, dtype='float', scope='g0') # [N, M, JX, 2d]
g0 = tf.concat(axis=3, values=[fw_g0, bw_g0])
(fw_g1, bw_g1), _ = bidirectional_dynamic_rnn(second_cell_fw, second_cell_bw, g0, x_len, dtype='float', scope='g1') # [N, M, JX, 2d]
g1 = tf.concat(axis=3, values=[fw_g1, bw_g1])
logits = get_logits([g1, p0], d, True, wd=config.wd, input_keep_prob=config.input_keep_prob,
mask=self.x_mask, is_train=self.is_train, func=config.answer_func, scope='logits1')
a1i = softsel(tf.reshape(g1, [N, M * JX, 2 * d]), tf.reshape(logits, [N, M * JX]))
a1i = tf.tile(tf.expand_dims(tf.expand_dims(a1i, 1), 1), [1, M, JX, 1])
(fw_g2, bw_g2), _ = bidirectional_dynamic_rnn(d_cell4_fw, d_cell4_bw, tf.concat(axis=3, values=[p0, g1, a1i, g1 * a1i]),
x_len, dtype='float', scope='g2') # [N, M, JX, 2d]
g2 = tf.concat(axis=3, values=[fw_g2, bw_g2])
logits2 = get_logits([g2, p0], d, True, wd=config.wd, input_keep_prob=config.input_keep_prob,
mask=self.x_mask,
is_train=self.is_train, func=config.answer_func, scope='logits2')
flat_logits = tf.reshape(logits, [-1, M * JX])
flat_yp = tf.nn.softmax(flat_logits) # [-1, M*JX]
flat_logits2 = tf.reshape(logits2, [-1, M * JX])
flat_yp2 = tf.nn.softmax(flat_logits2)
if config.na:
na_bias = tf.get_variable("na_bias", shape=[], dtype='float')
na_bias_tiled = tf.tile(tf.reshape(na_bias, [1, 1]), [N, 1]) # [N, 1]
concat_flat_logits = tf.concat(axis=1, values=[na_bias_tiled, flat_logits])
concat_flat_yp = tf.nn.softmax(concat_flat_logits)
na_prob = tf.squeeze(tf.slice(concat_flat_yp, [0, 0], [-1, 1]), [1])
flat_yp = tf.slice(concat_flat_yp, [0, 1], [-1, -1])
concat_flat_logits2 = tf.concat(axis=1, values=[na_bias_tiled, flat_logits2])
concat_flat_yp2 = tf.nn.softmax(concat_flat_logits2)
na_prob2 = tf.squeeze(tf.slice(concat_flat_yp2, [0, 0], [-1, 1]), [1]) # [N]
flat_yp2 = tf.slice(concat_flat_yp2, [0, 1], [-1, -1])
self.concat_logits = concat_flat_logits
self.concat_logits2 = concat_flat_logits2
self.na_prob = na_prob * na_prob2
yp = tf.reshape(flat_yp, [-1, M, JX])
yp2 = tf.reshape(flat_yp2, [-1, M, JX])
wyp = tf.nn.sigmoid(logits2)
self.tensor_dict['g1'] = g1
self.tensor_dict['g2'] = g2
self.logits = flat_logits
self.logits2 = flat_logits2
self.yp = yp
self.yp2 = yp2
self.wyp = wyp
def _build_loss(self):
config = self.config
JX = tf.shape(self.x)[2]
M = tf.shape(self.x)[1]
JQ = tf.shape(self.q)[1]
loss_mask = tf.reduce_max(tf.cast(self.q_mask, 'float'), 1)
if config.wy:
losses = tf.nn.sigmoid_cross_entropy_with_logits(
logits=tf.reshape(self.logits2, [-1, M, JX]), labels=tf.cast(self.wy, 'float')) # [N, M, JX]
num_pos = tf.reduce_sum(tf.cast(self.wy, 'float'))
num_neg = tf.reduce_sum(tf.cast(self.x_mask, 'float')) - num_pos
damp_ratio = num_pos / num_neg
dampened_losses = losses * (
(tf.cast(self.x_mask, 'float') - tf.cast(self.wy, 'float')) * damp_ratio + tf.cast(self.wy, 'float'))
new_losses = tf.reduce_sum(dampened_losses, [1, 2])
ce_loss = tf.reduce_mean(loss_mask * new_losses)
"""
if config.na:
na = tf.reshape(self.na, [-1, 1])
concat_y = tf.concat(1, [na, tf.reshape(self.wy, [-1, M * JX])])
losses = tf.nn.softmax_cross_entropy_with_logits(
self.concat_logits, tf.cast(concat_y, 'float') / tf.reduce_sum(tf.cast(self.wy, 'float')))
else:
losses = tf.nn.softmax_cross_entropy_with_logits(
self.logits2, tf.cast(tf.reshape(self.wy, [-1, M * JX]), 'float') / tf.reduce_sum(tf.cast(self.wy, 'float')))
ce_loss = tf.reduce_mean(loss_mask * losses)
"""
tf.add_to_collection('losses', ce_loss)
else:
if config.na:
na = tf.reshape(self.na, [-1, 1])
concat_y = tf.concat(axis=1, values=[na, tf.reshape(self.y, [-1, M * JX])])
losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.concat_logits, labels=tf.cast(concat_y, 'float'))
concat_y2 = tf.concat(axis=1, values=[na, tf.reshape(self.y2, [-1, M * JX])])
losses2 = tf.nn.softmax_cross_entropy_with_logits(logits=self.concat_logits2, labels=tf.cast(concat_y2, 'float'))
else:
losses = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits, labels=tf.cast(tf.reshape(self.y, [-1, M * JX]), 'float'))
losses2 = tf.nn.softmax_cross_entropy_with_logits(
logits=self.logits2, labels=tf.cast(tf.reshape(self.y2, [-1, M * JX]), 'float'))
ce_loss = tf.reduce_mean(loss_mask * losses)
ce_loss2 = tf.reduce_mean(loss_mask * losses2)
tf.add_to_collection('losses', ce_loss)
tf.add_to_collection("losses", ce_loss2)
self.loss = tf.add_n(tf.get_collection('losses', scope=self.scope), name='loss')
tf.summary.scalar(self.loss.op.name, self.loss)
tf.add_to_collection('ema/scalar', self.loss)
def _build_ema(self):
self.ema = tf.train.ExponentialMovingAverage(self.config.decay)
ema = self.ema
tensors = tf.get_collection("ema/scalar", scope=self.scope) + tf.get_collection("ema/vector", scope=self.scope)
ema_op = ema.apply(tensors)
for var in tf.get_collection("ema/scalar", scope=self.scope):
ema_var = ema.average(var)
tf.summary.scalar(ema_var.op.name, ema_var)
for var in tf.get_collection("ema/vector", scope=self.scope):
ema_var = ema.average(var)
tf.summary.histogram(ema_var.op.name, ema_var)
with tf.control_dependencies([ema_op]):
self.loss = tf.identity(self.loss)
def _build_var_ema(self):
self.var_ema = tf.train.ExponentialMovingAverage(self.config.var_decay)
ema = self.var_ema
ema_op = ema.apply(tf.trainable_variables())
with tf.control_dependencies([ema_op]):
self.loss = tf.identity(self.loss)
def get_loss(self):
return self.loss
def get_global_step(self):
return self.global_step
def get_var_list(self):
return self.var_list
def get_feed_dict(self, batch, is_train, supervised=True):
assert isinstance(batch, DataSet)
config = self.config
N, M, JX, JQ, VW, VC, d, W = \
config.batch_size, config.max_num_sents, config.max_sent_size, \
config.max_ques_size, config.word_vocab_size, config.char_vocab_size, config.hidden_size, config.max_word_size
feed_dict = {}
if config.len_opt:
"""
Note that this optimization results in variable GPU RAM usage (i.e. can cause OOM in the middle of training.)
First test without len_opt and make sure no OOM, and use len_opt
"""
if sum(len(sent) for para in batch.data['x'] for sent in para) == 0:
new_JX = 1
else:
new_JX = max(len(sent) for para in batch.data['x'] for sent in para)
JX = min(JX, new_JX)
if sum(len(ques) for ques in batch.data['q']) == 0:
new_JQ = 1
else:
new_JQ = max(len(ques) for ques in batch.data['q'])
JQ = min(JQ, new_JQ)
if config.cpu_opt:
if sum(len(para) for para in batch.data['x']) == 0:
new_M = 1
else:
new_M = max(len(para) for para in batch.data['x'])
M = min(M, new_M)
x = np.zeros([N, M, JX], dtype='int32')
cx = np.zeros([N, M, JX, W], dtype='int32')
x_mask = np.zeros([N, M, JX], dtype='bool')
q = np.zeros([N, JQ], dtype='int32')
cq = np.zeros([N, JQ, W], dtype='int32')
q_mask = np.zeros([N, JQ], dtype='bool')
feed_dict[self.x] = x
feed_dict[self.x_mask] = x_mask
feed_dict[self.cx] = cx
feed_dict[self.q] = q
feed_dict[self.cq] = cq
feed_dict[self.q_mask] = q_mask
feed_dict[self.is_train] = is_train
if config.use_glove_for_unk:
feed_dict[self.new_emb_mat] = batch.shared['new_emb_mat']
X = batch.data['x']
CX = batch.data['cx']
if supervised:
y = np.zeros([N, M, JX], dtype='bool')
y2 = np.zeros([N, M, JX], dtype='bool')
wy = np.zeros([N, M, JX], dtype='bool')
na = np.zeros([N], dtype='bool')
feed_dict[self.y] = y
feed_dict[self.y2] = y2
feed_dict[self.wy] = wy
feed_dict[self.na] = na
for i, (xi, cxi, yi, nai) in enumerate(zip(X, CX, batch.data['y'], batch.data['na'])):
if nai:
na[i] = nai
continue
start_idx, stop_idx = random.choice(yi)
j, k = start_idx
j2, k2 = stop_idx
if config.single:
X[i] = [xi[j]]
CX[i] = [cxi[j]]
j, j2 = 0, 0
if config.squash:
offset = sum(map(len, xi[:j]))
j, k = 0, k + offset
offset = sum(map(len, xi[:j2]))
j2, k2 = 0, k2 + offset
y[i, j, k] = True
y2[i, j2, k2-1] = True
if j == j2:
wy[i, j, k:k2] = True
else:
wy[i, j, k:len(batch.data['x'][i][j])] = True
wy[i, j2, :k2] = True
def _get_word(word):
d = batch.shared['word2idx']
for each in (word, word.lower(), word.capitalize(), word.upper()):
if each in d:
return d[each]
if config.use_glove_for_unk:
d2 = batch.shared['new_word2idx']
for each in (word, word.lower(), word.capitalize(), word.upper()):
if each in d2:
return d2[each] + len(d)
return 1
def _get_char(char):
d = batch.shared['char2idx']
if char in d:
return d[char]
return 1
for i, xi in enumerate(X):
if self.config.squash:
xi = [list(itertools.chain(*xi))]
for j, xij in enumerate(xi):
if j == config.max_num_sents:
break
for k, xijk in enumerate(xij):
if k == config.max_sent_size:
break
each = _get_word(xijk)
assert isinstance(each, int), each
x[i, j, k] = each
x_mask[i, j, k] = True
for i, cxi in enumerate(CX):
if self.config.squash:
cxi = [list(itertools.chain(*cxi))]
for j, cxij in enumerate(cxi):
if j == config.max_num_sents:
break
for k, cxijk in enumerate(cxij):
if k == config.max_sent_size:
break
for l, cxijkl in enumerate(cxijk):
if l == config.max_word_size:
break
cx[i, j, k, l] = _get_char(cxijkl)
for i, qi in enumerate(batch.data['q']):
for j, qij in enumerate(qi):
q[i, j] = _get_word(qij)
q_mask[i, j] = True
for i, cqi in enumerate(batch.data['cq']):
for j, cqij in enumerate(cqi):
for k, cqijk in enumerate(cqij):
cq[i, j, k] = _get_char(cqijk)
if k + 1 == config.max_word_size:
break
if supervised:
assert np.sum(~(x_mask | ~wy)) == 0
return feed_dict
def bi_attention(config, is_train, h, u, h_mask=None, u_mask=None, scope=None, tensor_dict=None):
with tf.variable_scope(scope or "bi_attention"):
JX = tf.shape(h)[2]
M = tf.shape(h)[1]
JQ = tf.shape(u)[1]
h_aug = tf.tile(tf.expand_dims(h, 3), [1, 1, 1, JQ, 1])
u_aug = tf.tile(tf.expand_dims(tf.expand_dims(u, 1), 1), [1, M, JX, 1, 1])
if h_mask is None:
hu_mask = None
else:
h_mask_aug = tf.tile(tf.expand_dims(h_mask, 3), [1, 1, 1, JQ])
u_mask_aug = tf.tile(tf.expand_dims(tf.expand_dims(u_mask, 1), 1), [1, M, JX, 1])
hu_mask = h_mask_aug & u_mask_aug
u_logits = get_logits([h_aug, u_aug], None, True, wd=config.wd, mask=hu_mask,
is_train=is_train, func=config.logit_func, scope='u_logits') # [N, M, JX, JQ]
u_a = softsel(u_aug, u_logits) # [N, M, JX, d]
h_a = softsel(h, tf.reduce_max(u_logits, 3)) # [N, M, d]
h_a = tf.tile(tf.expand_dims(h_a, 2), [1, 1, JX, 1])
if tensor_dict is not None:
a_u = tf.nn.softmax(u_logits) # [N, M, JX, JQ]
a_h = tf.nn.softmax(tf.reduce_max(u_logits, 3))
tensor_dict['a_u'] = a_u
tensor_dict['a_h'] = a_h
variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope=tf.get_variable_scope().name)
for var in variables:
tensor_dict[var.name] = var
return u_a, h_a
def attention_layer(config, is_train, h, u, h_mask=None, u_mask=None, scope=None, tensor_dict=None):
with tf.variable_scope(scope or "attention_layer"):
JX = tf.shape(h)[2]
M = tf.shape(h)[1]
JQ = tf.shape(u)[1]
if config.q2c_att or config.c2q_att:
u_a, h_a = bi_attention(config, is_train, h, u, h_mask=h_mask, u_mask=u_mask, tensor_dict=tensor_dict)
if not config.c2q_att:
u_a = tf.tile(tf.expand_dims(tf.expand_dims(tf.reduce_mean(u, 1), 1), 1), [1, M, JX, 1])
if config.q2c_att:
p0 = tf.concat(axis=3, values=[h, u_a, h * u_a, h * h_a])
else:
p0 = tf.concat(axis=3, values=[h, u_a, h * u_a])
return p0