183 lines
5.2 KiB
Python
183 lines
5.2 KiB
Python
|
#!/usr/bin/env python3
|
|||
|
"""
|
|||
|
This is the CNN tutorial from https://docs.kidger.site/equinox/examples/mnist/,
|
|||
|
just using it to learn equinox
|
|||
|
"""
|
|||
|
import equinox as eqx
|
|||
|
import jax.numpy as jnp
|
|||
|
import jax
|
|||
|
import optax
|
|||
|
import time
|
|||
|
import torch
|
|||
|
import torchvision
|
|||
|
from jaxtyping import Array, Float, Int, PyTree
|
|||
|
|
|||
|
|
|||
|
class CNN(eqx.Module):
|
|||
|
layers: list
|
|||
|
|
|||
|
def __init__(self, key):
|
|||
|
keys = jax.random.split(key, 4)
|
|||
|
keys = list(keys)
|
|||
|
|
|||
|
self.layers = [
|
|||
|
eqx.nn.Conv2d(1, 3, kernel_size=4, key=keys[0]),
|
|||
|
eqx.nn.MaxPool2d(kernel_size=2),
|
|||
|
jax.nn.relu,
|
|||
|
jnp.ravel,
|
|||
|
eqx.nn.Linear(1728, 512, key=keys[1]),
|
|||
|
jax.nn.sigmoid,
|
|||
|
eqx.nn.Linear(512, 64, key=keys[2]),
|
|||
|
jax.nn.relu,
|
|||
|
eqx.nn.Linear(64, 10, key=keys[3]),
|
|||
|
jax.nn.log_softmax,
|
|||
|
]
|
|||
|
|
|||
|
def __call__(self, x: Float[Array, "1 28 28"]) -> Float[Array, "10"]:
|
|||
|
for layer in self.layers:
|
|||
|
x = layer(x)
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
def cross_entropy(
|
|||
|
y: Int[Array, " batch"], pred_y: Int[Array, " batch"]
|
|||
|
) -> Float[Array, ""]:
|
|||
|
pred_y = jnp.take_along_axis(pred_y, jnp.expand_dims(y, 1), axis=1)
|
|||
|
return -jnp.mean(pred_y)
|
|||
|
|
|||
|
|
|||
|
@eqx.filter_jit
|
|||
|
def loss(
|
|||
|
model: CNN, x: Float[Array, "batch 1 28 28"], y: Int[Array, " batch"]
|
|||
|
) -> Float[Array, ""]:
|
|||
|
pred_y = jax.vmap(model)(x)
|
|||
|
return cross_entropy(y, pred_y)
|
|||
|
|
|||
|
|
|||
|
@eqx.filter_jit
|
|||
|
def compute_accuracy(
|
|||
|
model: CNN, x: Float[Array, "batch 1 28 28"], y: Int[Array, " batch"]
|
|||
|
) -> Float[Array, ""]:
|
|||
|
pred_y = jax.vmap(model)(x)
|
|||
|
pred_y = jnp.argmax(pred_y, axis=1)
|
|||
|
return jnp.mean(y == pred_y)
|
|||
|
|
|||
|
|
|||
|
def evaluate(model: CNN, testloader: torch.utils.data.DataLoader):
|
|||
|
avg_loss = 0
|
|||
|
avg_acc = 0
|
|||
|
|
|||
|
for x, y in testloader:
|
|||
|
x = jnp.array(x.numpy())
|
|||
|
y = jnp.array(y.numpy())
|
|||
|
|
|||
|
avg_loss += loss(model, x, y)
|
|||
|
avg_acc += compute_accuracy(model, x, y)
|
|||
|
|
|||
|
return avg_loss / len(testloader), avg_acc / len(testloader)
|
|||
|
|
|||
|
|
|||
|
def train(
|
|||
|
model: CNN,
|
|||
|
trainloader: torch.utils.data.DataLoader,
|
|||
|
testloader: torch.utils.data.DataLoader,
|
|||
|
optim: optax.GradientTransformation,
|
|||
|
steps: int,
|
|||
|
print_every: int,
|
|||
|
) -> CNN:
|
|||
|
@eqx.filter_jit
|
|||
|
def make_step(
|
|||
|
model: CNN,
|
|||
|
opt_state: PyTree,
|
|||
|
x: Float[Array, "batch 1 28 28"],
|
|||
|
y: Int[Array, "batch"],
|
|||
|
):
|
|||
|
loss_value, grads = eqx.filter_value_and_grad(loss)(model, x, y)
|
|||
|
updates, opt_state = optim.update(
|
|||
|
grads, opt_state, eqx.filter(model, eqx.is_array)
|
|||
|
)
|
|||
|
model = eqx.apply_updates(model, updates)
|
|||
|
return model, opt_state, loss_value
|
|||
|
|
|||
|
def infinite_data(loader: torch.utils.data.DataLoader):
|
|||
|
while True:
|
|||
|
yield from loader # Yields from loader until exhausted
|
|||
|
|
|||
|
opt_state = optim.init(eqx.filter(model, eqx.is_array))
|
|||
|
|
|||
|
for step, (x, y) in zip(range(steps), infinite_data(trainloader)):
|
|||
|
x = jnp.array(x.numpy())
|
|||
|
y = jnp.array(y.numpy())
|
|||
|
|
|||
|
model, opt_state, train_loss = make_step(model, opt_state, x, y)
|
|||
|
|
|||
|
if (step % print_every) == 0 or step == steps - 1:
|
|||
|
avg_loss, avg_acc = evaluate(model, testloader)
|
|||
|
|
|||
|
jax.debug.print("==== step {} ====", step)
|
|||
|
jax.debug.print("train loss = {}", train_loss)
|
|||
|
jax.debug.print("test loss = {}", avg_loss)
|
|||
|
jax.debug.print("text accuracy = {}", avg_acc)
|
|||
|
|
|||
|
return model
|
|||
|
|
|||
|
|
|||
|
# ╔─────────────────────────────────────────────────────────────────────────────╗
|
|||
|
# │ Mαiη scriρτ |
|
|||
|
# ╚─────────────────────────────────────────────────────────────────────────────╝
|
|||
|
jax.config.update("jax_platform_name", "gpu") # Sets preferred device
|
|||
|
|
|||
|
# Checking to make sure gpu is being used
|
|||
|
from jax.extend import backend
|
|||
|
|
|||
|
print(backend.get_backend().platform)
|
|||
|
print(f"JAX devices: {jax.devices()}")
|
|||
|
print(f"Default device: {jax.default_backend()}")
|
|||
|
|
|||
|
# Hyperparameters
|
|||
|
BATCH_SIZE = 1024
|
|||
|
LEARNING_RATE = 1e-4
|
|||
|
STEPS = 1200
|
|||
|
PRINT_EVERY = 300
|
|||
|
SEED = 5678
|
|||
|
|
|||
|
key = jax.random.PRNGKey(SEED)
|
|||
|
key, subkey = jax.random.split(key, 2)
|
|||
|
|
|||
|
# Data preprocessing
|
|||
|
normalize_data = torchvision.transforms.Compose(
|
|||
|
[
|
|||
|
torchvision.transforms.ToTensor(),
|
|||
|
torchvision.transforms.Normalize((0.5,), (0.5,)),
|
|||
|
]
|
|||
|
)
|
|||
|
|
|||
|
train_dataset = torchvision.datasets.MNIST(
|
|||
|
"MNIST",
|
|||
|
train=True,
|
|||
|
download=True,
|
|||
|
transform=normalize_data,
|
|||
|
)
|
|||
|
test_dataset = torchvision.datasets.MNIST(
|
|||
|
"MNIST",
|
|||
|
train=False,
|
|||
|
download=True,
|
|||
|
transform=normalize_data,
|
|||
|
)
|
|||
|
|
|||
|
trainloader = torch.utils.data.DataLoader(
|
|||
|
train_dataset, batch_size=BATCH_SIZE, shuffle=True
|
|||
|
)
|
|||
|
testloader = torch.utils.data.DataLoader(
|
|||
|
test_dataset, batch_size=BATCH_SIZE, shuffle=True
|
|||
|
)
|
|||
|
|
|||
|
model = CNN(subkey)
|
|||
|
optim = optax.adamw(LEARNING_RATE)
|
|||
|
|
|||
|
start = time.time()
|
|||
|
model = train(model, trainloader, testloader, optim, STEPS, PRINT_EVERY)
|
|||
|
cease = time.time()
|
|||
|
|
|||
|
print(f"Took {cease-start}s")
|