Resnet: add data loaders
This commit is contained in:
parent
f3e2336b21
commit
3cb444e529
1 changed files with 216 additions and 0 deletions
216
resnet_cifar10.py
Executable file
216
resnet_cifar10.py
Executable file
|
@ -0,0 +1,216 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
This is the CNN tutorial from https://docs.kidger.site/equinox/examples/mnist/,
|
||||||
|
just using it to learn equinox
|
||||||
|
"""
|
||||||
|
import equinox as eqx
|
||||||
|
import jax.numpy as jnp
|
||||||
|
import jax
|
||||||
|
import optax
|
||||||
|
import time
|
||||||
|
import torch
|
||||||
|
import torchvision
|
||||||
|
from jaxtyping import Array, Float, Int, PyTree
|
||||||
|
|
||||||
|
|
||||||
|
class CNN(eqx.Module):
|
||||||
|
layers: list
|
||||||
|
|
||||||
|
def __init__(self, key):
|
||||||
|
keys = jax.random.split(key, 4)
|
||||||
|
keys = list(keys)
|
||||||
|
|
||||||
|
self.layers = [
|
||||||
|
eqx.nn.Conv2d(1, 3, kernel_size=4, key=keys[0]),
|
||||||
|
eqx.nn.MaxPool2d(kernel_size=2),
|
||||||
|
jax.nn.relu,
|
||||||
|
jnp.ravel,
|
||||||
|
eqx.nn.Linear(1728, 512, key=keys[1]),
|
||||||
|
jax.nn.sigmoid,
|
||||||
|
eqx.nn.Linear(512, 64, key=keys[2]),
|
||||||
|
jax.nn.relu,
|
||||||
|
eqx.nn.Linear(64, 10, key=keys[3]),
|
||||||
|
jax.nn.log_softmax,
|
||||||
|
]
|
||||||
|
|
||||||
|
def __call__(self, x: Float[Array, "1 28 28"]) -> Float[Array, "10"]:
|
||||||
|
for layer in self.layers:
|
||||||
|
x = layer(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def cross_entropy(
|
||||||
|
y: Int[Array, " batch"], pred_y: Int[Array, " batch"]
|
||||||
|
) -> Float[Array, ""]:
|
||||||
|
pred_y = jnp.take_along_axis(pred_y, jnp.expand_dims(y, 1), axis=1)
|
||||||
|
return -jnp.mean(pred_y)
|
||||||
|
|
||||||
|
|
||||||
|
@eqx.filter_jit
|
||||||
|
def loss(
|
||||||
|
model: CNN, x: Float[Array, "batch 1 28 28"], y: Int[Array, " batch"]
|
||||||
|
) -> Float[Array, ""]:
|
||||||
|
pred_y = jax.vmap(model)(x)
|
||||||
|
return cross_entropy(y, pred_y)
|
||||||
|
|
||||||
|
|
||||||
|
@eqx.filter_jit
|
||||||
|
def compute_accuracy(
|
||||||
|
model: CNN, x: Float[Array, "batch 1 28 28"], y: Int[Array, " batch"]
|
||||||
|
) -> Float[Array, ""]:
|
||||||
|
pred_y = jax.vmap(model)(x)
|
||||||
|
pred_y = jnp.argmax(pred_y, axis=1)
|
||||||
|
return jnp.mean(y == pred_y)
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate(model: CNN, testloader: torch.utils.data.DataLoader):
|
||||||
|
avg_loss = 0
|
||||||
|
avg_acc = 0
|
||||||
|
|
||||||
|
for x, y in testloader:
|
||||||
|
x = jnp.array(x.numpy())
|
||||||
|
y = jnp.array(y.numpy())
|
||||||
|
|
||||||
|
avg_loss += loss(model, x, y)
|
||||||
|
avg_acc += compute_accuracy(model, x, y)
|
||||||
|
|
||||||
|
return avg_loss / len(testloader), avg_acc / len(testloader)
|
||||||
|
|
||||||
|
|
||||||
|
def train(
|
||||||
|
model: CNN,
|
||||||
|
trainloader: torch.utils.data.DataLoader,
|
||||||
|
testloader: torch.utils.data.DataLoader,
|
||||||
|
optim: optax.GradientTransformation,
|
||||||
|
steps: int,
|
||||||
|
print_every: int,
|
||||||
|
) -> CNN:
|
||||||
|
@eqx.filter_jit
|
||||||
|
def make_step(
|
||||||
|
model: CNN,
|
||||||
|
opt_state: PyTree,
|
||||||
|
x: Float[Array, "batch 1 28 28"],
|
||||||
|
y: Int[Array, "batch"],
|
||||||
|
):
|
||||||
|
loss_value, grads = eqx.filter_value_and_grad(loss)(model, x, y)
|
||||||
|
updates, opt_state = optim.update(
|
||||||
|
grads, opt_state, eqx.filter(model, eqx.is_array)
|
||||||
|
)
|
||||||
|
model = eqx.apply_updates(model, updates)
|
||||||
|
return model, opt_state, loss_value
|
||||||
|
|
||||||
|
def infinite_data(loader: torch.utils.data.DataLoader):
|
||||||
|
while True:
|
||||||
|
yield from loader # Yields from loader until exhausted
|
||||||
|
|
||||||
|
opt_state = optim.init(eqx.filter(model, eqx.is_array))
|
||||||
|
|
||||||
|
for step, (x, y) in zip(range(steps), infinite_data(trainloader)):
|
||||||
|
x = jnp.array(x.numpy())
|
||||||
|
y = jnp.array(y.numpy())
|
||||||
|
|
||||||
|
model, opt_state, train_loss = make_step(model, opt_state, x, y)
|
||||||
|
|
||||||
|
if (step % print_every) == 0 or step == steps - 1:
|
||||||
|
avg_loss, avg_acc = evaluate(model, testloader)
|
||||||
|
|
||||||
|
jax.debug.print("==== step {} ====", step)
|
||||||
|
jax.debug.print("train loss = {}", train_loss)
|
||||||
|
jax.debug.print("test loss = {}", avg_loss)
|
||||||
|
jax.debug.print("text accuracy = {}", avg_acc)
|
||||||
|
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def build_dataloader(is_train):
|
||||||
|
global BATCH_SIZE
|
||||||
|
|
||||||
|
transform_train = torchvision.transforms.Compose([
|
||||||
|
torchvision.transforms.RandomCrop(32, padding=4),
|
||||||
|
torchvision.transforms.RandomHorizontalFlip(),
|
||||||
|
torchvision.transforms.ToTensor(),
|
||||||
|
torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465),
|
||||||
|
(0.247, 0.243, 0.261))
|
||||||
|
])
|
||||||
|
transform_test = torchvision.transforms.Compose([
|
||||||
|
torchvision.transforms.ToTensor(),
|
||||||
|
torchvision.transforms.Normalize((0.4914, 0.4822, 0.4465),
|
||||||
|
(0.247, 0.243, 0.261))
|
||||||
|
])
|
||||||
|
|
||||||
|
dataset = torchvision.datasets.CIFAR10(
|
||||||
|
"data",
|
||||||
|
train=is_train,
|
||||||
|
download=True,
|
||||||
|
transform=(transform_train if is_train else transform_test)
|
||||||
|
)
|
||||||
|
|
||||||
|
dataloader = torch.utils.data.DataLoader(
|
||||||
|
dataset, batch_size=BATCH_SIZE, shuffle=True
|
||||||
|
)
|
||||||
|
|
||||||
|
class DataLoaderWrapper:
|
||||||
|
def __init__(self, dataloader, nb_classes):
|
||||||
|
self.dataloader = dataloader
|
||||||
|
self.nb_classes = nb_classes
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
for images, labels in self.dataloader:
|
||||||
|
images = jnp.array(images)
|
||||||
|
|
||||||
|
labels = jnp.array(labels)
|
||||||
|
labels = jax.nn.one_hot(labels, 10)
|
||||||
|
|
||||||
|
yield (images, labels)
|
||||||
|
|
||||||
|
return DataLoaderWrapper(dataloader, 10)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# ╔─────────────────────────────────────────────────────────────────────────────╗
|
||||||
|
# │ Main script |
|
||||||
|
# ╚─────────────────────────────────────────────────────────────────────────────╝
|
||||||
|
jax.config.update("jax_platform_name", "gpu") # Sets preferred device
|
||||||
|
|
||||||
|
# Checking to make sure gpu is being used
|
||||||
|
from jax.extend import backend
|
||||||
|
|
||||||
|
print(backend.get_backend().platform)
|
||||||
|
print(f"JAX devices: {jax.devices()}")
|
||||||
|
print(f"Default device: {jax.default_backend()}")
|
||||||
|
|
||||||
|
# Hyperparameters
|
||||||
|
BATCH_SIZE = 16
|
||||||
|
LEARNING_RATE = 1e-4
|
||||||
|
STEPS = 1200
|
||||||
|
PRINT_EVERY = 300
|
||||||
|
SEED = 5678
|
||||||
|
|
||||||
|
key = jax.random.PRNGKey(SEED)
|
||||||
|
key, subkey = jax.random.split(key, 2)
|
||||||
|
|
||||||
|
dataloader = build_dataloader(False)
|
||||||
|
|
||||||
|
print(dataloader)
|
||||||
|
|
||||||
|
x = next(iter(dataloader))
|
||||||
|
print(type(x), len(x))
|
||||||
|
print(type(x[0]), type(x[1]))
|
||||||
|
print(x[0].shape, x[1].shape)
|
||||||
|
# x[1] = jnp.array(x[1])
|
||||||
|
# print(f"Max: {jnp.max(x[1])}")
|
||||||
|
# print(f"Min: {jnp.min(x[1])}")
|
||||||
|
# print(f"Mean: {jnp.mean(x[1])}")
|
||||||
|
print(f"First: {x[0][0, 0]}")
|
||||||
|
# print(f"1hot: {jax.nn.one_hot(x[1][0], 10)}")
|
||||||
|
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
# model = CNN(subkey)
|
||||||
|
# optim = optax.adamw(LEARNING_RATE)
|
||||||
|
#
|
||||||
|
# start = time.time()
|
||||||
|
# model = train(model, trainloader, testloader, optim, STEPS, PRINT_EVERY)
|
||||||
|
# cease = time.time()
|
||||||
|
|
||||||
|
print(f"Took {cease-start}s")
|
Loading…
Reference in a new issue