247 lines
8.5 KiB
Python
247 lines
8.5 KiB
Python
|
# PyTorch implementation of
|
||
|
# https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/train.py
|
||
|
#
|
||
|
# author: Chenxiang Zhang (orientino)
|
||
|
#random stuff
|
||
|
import os
|
||
|
import argparse
|
||
|
import time
|
||
|
from pathlib import Path
|
||
|
#torch stuff
|
||
|
import numpy as np
|
||
|
import pytorch_lightning as pl
|
||
|
import torch
|
||
|
import wandb
|
||
|
from torch import nn
|
||
|
from torch.utils.data import DataLoader
|
||
|
from torchvision import models, transforms
|
||
|
from torchvision.datasets import CIFAR10
|
||
|
from tqdm import tqdm
|
||
|
from torch.optim.lr_scheduler import MultiStepLR
|
||
|
import torch.optim as optim
|
||
|
import torch.nn.functional as F
|
||
|
import torchvision
|
||
|
from torchvision import transforms
|
||
|
|
||
|
|
||
|
|
||
|
#privacy libraries
|
||
|
import opacus
|
||
|
from opacus.validators import ModuleValidator
|
||
|
#cutom modules
|
||
|
from utils import json_file_to_pyobj, get_loaders
|
||
|
from WideResNet import WideResNet
|
||
|
import student_model
|
||
|
|
||
|
#suppress warning
|
||
|
import warnings
|
||
|
warnings.filterwarnings("ignore")
|
||
|
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--lr", default=0.1, type=float)
|
||
|
parser.add_argument("--epochs", default=1, type=int)
|
||
|
parser.add_argument("--n_shadows", default=16, type=int)
|
||
|
parser.add_argument("--shadow_id", default=1, type=int)
|
||
|
parser.add_argument("--model", default="resnet18", type=str)
|
||
|
parser.add_argument("--pkeep", default=0.5, type=float)
|
||
|
parser.add_argument("--savedir", default="exp/cifar10", type=str)
|
||
|
parser.add_argument("--debug", action="store_true")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mps")
|
||
|
|
||
|
def get_trainset(train_batch_size=128, test_batch_size=10):
|
||
|
print(f"Train batch size: {train_batch_size}")
|
||
|
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
|
||
|
|
||
|
train_transform = transforms.Compose([
|
||
|
transforms.ToTensor(),
|
||
|
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
|
||
|
(4, 4, 4, 4), mode='reflect').squeeze()),
|
||
|
transforms.ToPILImage(),
|
||
|
transforms.RandomCrop(32),
|
||
|
transforms.RandomHorizontalFlip(),
|
||
|
transforms.ToTensor(),
|
||
|
normalize,
|
||
|
])
|
||
|
|
||
|
test_transform = transforms.Compose([
|
||
|
transforms.ToTensor(),
|
||
|
normalize
|
||
|
])
|
||
|
|
||
|
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=train_transform)
|
||
|
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=test_transform)
|
||
|
|
||
|
return trainset, testset
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def test(model, test_dl, teacher=False):
|
||
|
device = DEVICE
|
||
|
model.to(device)
|
||
|
model.eval()
|
||
|
|
||
|
correct = 0
|
||
|
total = 0
|
||
|
|
||
|
for inputs, labels in test_dl:
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
if teacher:
|
||
|
outputs, _, _, _ = model(inputs)
|
||
|
else:
|
||
|
outputs = model(inputs)
|
||
|
_, predicted = torch.max(outputs.data, 1)
|
||
|
|
||
|
total += labels.size(0)
|
||
|
correct += (predicted == labels).sum().item()
|
||
|
|
||
|
accuracy = 100 * correct / total
|
||
|
print(f"Test Accuracy: {accuracy:.2f}%")
|
||
|
return accuracy
|
||
|
|
||
|
|
||
|
|
||
|
def run(teacher, student):
|
||
|
device = DEVICE
|
||
|
seed = np.random.randint(0, 1000000000)
|
||
|
seed ^= int(time.time())
|
||
|
pl.seed_everything(seed)
|
||
|
|
||
|
args.debug = True
|
||
|
wandb.init(project="lira", mode="disabled" if args.debug else "online")
|
||
|
wandb.config.update(args)
|
||
|
|
||
|
# Dataset
|
||
|
train_ds, test_ds = get_trainset()
|
||
|
# Compute the IN / OUT subset:
|
||
|
# If we run each experiment independently then even after a lot of trials
|
||
|
# there will still probably be some examples that were always included
|
||
|
# or always excluded. So instead, with experiment IDs, we guarantee that
|
||
|
# after `args.n_shadows` are done, each example is seen exactly half
|
||
|
# of the time in train, and half of the time not in train.
|
||
|
|
||
|
size = len(train_ds)
|
||
|
np.random.seed(seed)
|
||
|
if args.n_shadows is not None:
|
||
|
np.random.seed(0)
|
||
|
keep = np.random.uniform(0, 1, size=(args.n_shadows, size))
|
||
|
order = keep.argsort(0)
|
||
|
keep = order < int(args.pkeep * args.n_shadows)
|
||
|
keep = np.array(keep[args.shadow_id], dtype=bool)
|
||
|
keep = keep.nonzero()[0]
|
||
|
else:
|
||
|
keep = np.random.choice(size, size=int(args.pkeep * size), replace=False)
|
||
|
keep.sort()
|
||
|
keep_bool = np.full((size), False)
|
||
|
keep_bool[keep] = True
|
||
|
|
||
|
train_ds = torch.utils.data.Subset(train_ds, keep)
|
||
|
train_dl = DataLoader(train_ds, batch_size=128, shuffle=True, num_workers=4)
|
||
|
test_dl = DataLoader(test_ds, batch_size=128, shuffle=False, num_workers=4)
|
||
|
|
||
|
|
||
|
# Train
|
||
|
learning_rate=0.001
|
||
|
T=2
|
||
|
soft_target_loss_weight=0.25
|
||
|
ce_loss_weight=0.75
|
||
|
|
||
|
ce_loss = nn.CrossEntropyLoss()
|
||
|
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
|
||
|
|
||
|
teacher.eval() # Teacher set to evaluation mode
|
||
|
student.train() # Student to train mode
|
||
|
|
||
|
for epoch in range(args.epochs):
|
||
|
running_loss = 0.0
|
||
|
for inputs, labels in train_dl:
|
||
|
inputs, labels = inputs.to(device), labels.to(device)
|
||
|
|
||
|
optimizer.zero_grad()
|
||
|
# Forward pass with the teacher model - do not save gradients here as we do not change the teacher's weights
|
||
|
with torch.no_grad():
|
||
|
teacher_logits, _, _, _ = teacher(inputs)
|
||
|
|
||
|
# Forward pass with the student model
|
||
|
student_logits = student(inputs)
|
||
|
#Soften the student logits by applying softmax first and log() second
|
||
|
soft_targets = nn.functional.softmax(teacher_logits / T, dim=-1)
|
||
|
soft_prob = nn.functional.log_softmax(student_logits / T, dim=-1)
|
||
|
|
||
|
# Calculate the soft targets loss. Scaled by T**2 as suggested by the authors of the paper "Distilling the knowledge in a neural network"
|
||
|
soft_targets_loss = torch.sum(soft_targets * (soft_targets.log() - soft_prob)) / soft_prob.size()[0] * (T**2)
|
||
|
|
||
|
# Calculate the true label loss
|
||
|
label_loss = ce_loss(student_logits, labels)
|
||
|
|
||
|
# Weighted sum of the two losses
|
||
|
loss = soft_target_loss_weight * soft_targets_loss + ce_loss_weight * label_loss
|
||
|
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
|
||
|
running_loss += loss.item()
|
||
|
|
||
|
print(f"Epoch {epoch+1}/{args.epochs}, Loss: {running_loss / len(train_dl)}")
|
||
|
accuracy = test(student, test_dl)
|
||
|
#saving models
|
||
|
print("saving model")
|
||
|
savedir = os.path.join(args.savedir, str(args.shadow_id))
|
||
|
os.makedirs(savedir, exist_ok=True)
|
||
|
np.save(savedir + "/keep.npy", keep_bool)
|
||
|
torch.save(student.state_dict(), savedir + "/model.pt")
|
||
|
|
||
|
|
||
|
def main():
|
||
|
epochs = args.epochs
|
||
|
json_options = json_file_to_pyobj("wresnet16-audit-cifar10.json")
|
||
|
training_configurations = json_options.training
|
||
|
|
||
|
wrn_depth = training_configurations.wrn_depth
|
||
|
wrn_width = training_configurations.wrn_width
|
||
|
dataset = training_configurations.dataset.lower()
|
||
|
|
||
|
if torch.cuda.is_available():
|
||
|
device = torch.device('cuda:0')
|
||
|
else:
|
||
|
device = torch.device('cpu')
|
||
|
|
||
|
print("Load the teacher model")
|
||
|
# instantiate teacher model
|
||
|
strides = [1, 1, 2, 2]
|
||
|
teacher = WideResNet(d=wrn_depth, k=wrn_width, n_classes=10, input_features=3, output_features=16, strides=strides)
|
||
|
teacher = ModuleValidator.fix(teacher)
|
||
|
criterion = nn.CrossEntropyLoss()
|
||
|
optimizer = optim.SGD(teacher.parameters(), lr=0.1, momentum=0.9, nesterov=True, weight_decay=5e-4)
|
||
|
scheduler = MultiStepLR(optimizer, milestones=[int(elem*epochs) for elem in [0.3, 0.6, 0.8]], gamma=0.2)
|
||
|
train_loader, test_loader = get_loaders(dataset, training_configurations.batch_size)
|
||
|
best_test_set_accuracy = 0
|
||
|
dp_epsilon = 8
|
||
|
dp_delta = 1e-5
|
||
|
norm = 1.0
|
||
|
privacy_engine = opacus.PrivacyEngine()
|
||
|
teacher, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||
|
module=teacher,
|
||
|
optimizer=optimizer,
|
||
|
data_loader=train_loader,
|
||
|
epochs=epochs,
|
||
|
target_epsilon=dp_epsilon,
|
||
|
target_delta=dp_delta,
|
||
|
max_grad_norm=norm,
|
||
|
)
|
||
|
|
||
|
teacher.load_state_dict(torch.load(os.path.join("wrn-1733078278-8e-1e-05d-12.0n-dict.pt"), weights_only=True))
|
||
|
teacher.to(device)
|
||
|
teacher.eval()
|
||
|
#instantiate student "shadow model"
|
||
|
student = student_model.Model(num_classes=10).to(device)
|
||
|
# Check norm of layer for both networks -- student should be smaller?
|
||
|
print("Norm of 1st layer for teacher:", torch.norm(teacher.conv1.weight).item())
|
||
|
print("Norm of 1st layer for student:", torch.norm(student.features[0].weight).item())
|
||
|
#train student shadow model
|
||
|
run(teacher=teacher, student=student)
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
main()
|