mia_on_model_distillation/lira-pytorch/train.py

258 lines
8.2 KiB
Python
Raw Permalink Normal View History

2024-11-29 17:16:09 -07:00
# PyTorch implementation of
# https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/train.py
#
# author: Chenxiang Zhang (orientino)
import argparse
import os
import time
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
import wandb
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import CIFAR10
from tqdm import tqdm
from opacus.validators import ModuleValidator
from opacus import PrivacyEngine
from opacus.utils.batch_memory_manager import BatchMemoryManager
2024-11-29 19:43:38 -07:00
import pyvacy
#from pyvacy import optim#, analysis, sampling
2024-11-29 17:16:09 -07:00
from wide_resnet import WideResNet
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=0.1, type=float)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--n_shadows", default=16, type=int)
parser.add_argument("--shadow_id", default=1, type=int)
parser.add_argument("--model", default="resnet18", type=str)
parser.add_argument("--pkeep", default=0.5, type=float)
parser.add_argument("--savedir", default="exp/cifar10", type=str)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mps")
EPOCHS = args.epochs
2024-11-30 13:34:05 -07:00
class DewisNet(nn.Module):
def __init__(self):
super(DewisNet, self).__init__()
# I started my model from the tutorial: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html,
# then modified it.
# 2 convolutional layers, with pooling after each
self.conv1 = nn.Conv2d(3, 12, 5)
self.conv2 = nn.Conv2d(12, 32, 5)
self.pool = nn.MaxPool2d(2, 2)
# 3 linear layers
self.fc1 = nn.Linear(32 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
class JagielskiNet(nn.Module):
def __init__(self, input_shape, num_classes, l2=0.01):
super(JagielskiNet, self).__init__()
self.flatten = nn.Flatten()
input_dim = 1
for dim in input_shape:
input_dim *= dim
self.dense1 = nn.Linear(input_dim, 32)
self.relu1 = nn.ReLU()
self.dense2 = nn.Linear(32, num_classes)
# Initialize weights with Glorot Normal (Xavier Normal)
torch.nn.init.xavier_normal_(self.dense1.weight)
torch.nn.init.xavier_normal_(self.dense2.weight)
# L2 regularization (weight decay)
self.l2 = l2
def forward(self, x):
x = self.flatten(x)
x = self.dense1(x)
x = self.relu1(x)
x = self.dense2(x)
return x
2024-11-29 17:16:09 -07:00
def run():
seed = np.random.randint(0, 1000000000)
seed ^= int(time.time())
pl.seed_everything(seed)
args.debug = True
wandb.init(project="lira", mode="disabled" if args.debug else "online")
wandb.config.update(args)
# Dataset
train_transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2470, 0.2435, 0.2616]),
]
)
test_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2470, 0.2435, 0.2616]),
]
)
datadir = Path().home() / "opt/data/cifar"
train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform)
test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform)
# Compute the IN / OUT subset:
# If we run each experiment independently then even after a lot of trials
# there will still probably be some examples that were always included
# or always excluded. So instead, with experiment IDs, we guarantee that
# after `args.n_shadows` are done, each example is seen exactly half
# of the time in train, and half of the time not in train.
size = len(train_ds)
np.random.seed(seed)
if args.n_shadows is not None:
np.random.seed(0)
keep = np.random.uniform(0, 1, size=(args.n_shadows, size))
order = keep.argsort(0)
keep = order < int(args.pkeep * args.n_shadows)
keep = np.array(keep[args.shadow_id], dtype=bool)
keep = keep.nonzero()[0]
else:
keep = np.random.choice(size, size=int(args.pkeep * size), replace=False)
keep.sort()
keep_bool = np.full((size), False)
keep_bool[keep] = True
train_ds = torch.utils.data.Subset(train_ds, keep)
2024-11-30 13:34:05 -07:00
train_dl = DataLoader(train_ds, batch_size=256, shuffle=True, num_workers=4)
2024-11-29 17:16:09 -07:00
test_dl = DataLoader(test_ds, batch_size=128, shuffle=False, num_workers=4)
# Model
2024-11-30 13:34:05 -07:00
if args.model == "dewisnet":
m = DewisNet()
elif args.model == "jnet":
m = JagielskiNet((3,32,32), 10)
elif args.model == "wresnet28-2":
2024-11-29 17:16:09 -07:00
m = WideResNet(28, 2, 0.0, 10)
elif args.model == "wresnet28-10":
m = WideResNet(28, 10, 0.3, 10)
elif args.model == "resnet18":
m = models.resnet18(weights=None, num_classes=10)
m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
m.maxpool = nn.Identity()
else:
raise NotImplementedError
m = m.to(DEVICE)
m = ModuleValidator.fix(m)
ModuleValidator.validate(m, strict=True)
2024-11-30 13:34:05 -07:00
print(f"Device: {DEVICE}")
2024-11-29 17:16:09 -07:00
optim = torch.optim.SGD(m.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
2024-11-29 19:43:38 -07:00
#optim = pyvacy.DPSGD(
# params=m.parameters(),
# lr=args.lr,
# momentum=0.9,
# weight_decay=5e-4,
#)
2024-11-29 17:16:09 -07:00
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=args.epochs)
# Train
2024-11-30 13:34:05 -07:00
if False:
privacy_engine = PrivacyEngine()
m, optim, train_dl = privacy_engine.make_private_with_epsilon(
module=m,
optimizer=optim,
data_loader=train_dl,
epochs=args.epochs,
target_epsilon=8,
target_delta=1e-4,
max_grad_norm=1.0,
batch_first=True,
)
2024-11-29 19:43:38 -07:00
2024-11-30 13:34:05 -07:00
with BatchMemoryManager(
data_loader=train_dl,
max_physical_batch_size=1000,
optimizer=optim
) as memory_safe_data_loader:
for i in tqdm(range(args.epochs)):
m.train()
loss_total = 0
pbar = tqdm(memory_safe_data_loader, leave=False)
for itr, (x, y) in enumerate(pbar):
x, y = x.to(DEVICE), y.to(DEVICE)
2024-11-29 19:43:38 -07:00
loss = F.cross_entropy(m(x), y)
loss_total += loss
pbar.set_postfix_str(f"loss: {loss:.2f}")
optim.zero_grad()
loss.backward()
optim.step()
2024-11-30 13:34:05 -07:00
sched.step()
wandb.log({"loss": loss_total / len(train_dl)})
else:
for i in tqdm(range(args.epochs)):
m.train()
loss_total = 0
pbar = tqdm(train_dl, leave=False)
for itr, (x, y) in enumerate(pbar):
x, y = x.to(DEVICE), y.to(DEVICE)
loss = F.cross_entropy(m(x), y)
loss_total += loss
pbar.set_postfix_str(f"loss: {loss:.2f}")
optim.zero_grad()
loss.backward()
optim.step()
2024-11-29 17:16:09 -07:00
sched.step()
wandb.log({"loss": loss_total / len(train_dl)})
print(f"[test] acc_test: {get_acc(m, test_dl):.4f}")
wandb.log({"acc_test": get_acc(m, test_dl)})
savedir = os.path.join(args.savedir, str(args.shadow_id))
os.makedirs(savedir, exist_ok=True)
np.save(savedir + "/keep.npy", keep_bool)
torch.save(m.state_dict(), savedir + "/model.pt")
@torch.no_grad()
def get_acc(model, dl):
acc = []
for x, y in dl:
x, y = x.to(DEVICE), y.to(DEVICE)
acc.append(torch.argmax(model(x), dim=1) == y)
acc = torch.cat(acc)
acc = torch.sum(acc) / len(acc)
return acc.item()
if __name__ == "__main__":
run()