mia_on_model_distillation/one_run_audit/equations.py

53 lines
1.9 KiB
Python
Raw Permalink Normal View History

2024-12-02 23:48:50 -07:00
# These equations come from:
# [1] T. Steinke, M. Nasr, and M. Jagielski, “Privacy Auditing with One (1)
# Training Run,” May 15, 2023, arXiv: arXiv:2305.08846. Accessed: Sep. 15, 2024.
# [Online]. Available: http://arxiv.org/abs/2305.08846
import math
import scipy.stats
# m = number of examples, each included independently with probability 0.5
# r = number of guesses (i.e. excluding abstentions)
# v = number of correct guesses by auditor
# eps,delta = DP guarantee of null hypothesis
# output: p-value = probability of >=v correct guesses under null hypothesis
def p_value_DP_audit(m, r, v, eps, delta):
assert 0 <= v <= r <= m
assert eps >= 0
assert 0 <= delta <= 1
q = 1 / (1 + math.exp(-eps)) # accuracy of eps-DP randomized response
beta = scipy.stats.binom.sf(v - 1, r, q) # = P[Binomial(r, q) >= v]
alpha = 0
sum = 0 # = P[v > Binomial(r, q) >= v - i]
for i in range(1, v + 1):
sum = sum + scipy.stats.binom.pmf(v - i, r, q)
if sum > i * alpha:
alpha = sum / i
p = beta + alpha * delta * 2 * m
return min(p, 1)
# m = number of examples, each included independently with probability 0.5
# r = number of guesses (i.e. excluding abstentions)
# v = number of correct guesses by auditor
# p = 1-confidence e.g. p=0.05 corresponds to 95%
# output: lower bound on eps i.e. algorithm is not (eps,delta)-DP
def get_eps_audit(m, r, v, delta, p):
assert 0 <= v <= r <= m
assert 0 <= delta <= 1
assert 0 < p < 1
eps_min = 0 # maintain p_value_DP(eps_min) < p
eps_max = 1 # maintain p_value_DP(eps_max) >= p
while p_value_DP_audit(m, r, v, eps_max, delta) < p:
eps_max = eps_max + 1
for _ in range(30): # binary search
eps = (eps_min + eps_max) / 2
if p_value_DP_audit(m, r, v, eps, delta) < p:
eps_min = eps
else:
eps_max = eps
return eps_min
if __name__ == '__main__':
2024-12-05 00:13:50 -07:00
print(get_eps_audit(1000, 600, 600, 1e-5, 0.05))