mia_on_model_distillation/lira-pytorch/student_shadow_train.py

247 lines
8.5 KiB
Python
Raw Normal View History

2024-12-02 17:54:29 -07:00
# PyTorch implementation of
# https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/train.py
#
# author: Chenxiang Zhang (orientino)
#random stuff
import os
import argparse
import time
from pathlib import Path
#torch stuff
import numpy as np
import pytorch_lightning as pl
import torch
import wandb
from torch import nn
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import CIFAR10
from tqdm import tqdm
from torch.optim.lr_scheduler import MultiStepLR
import torch.optim as optim
import torch.nn.functional as F
import torchvision
from torchvision import transforms
#privacy libraries
import opacus
from opacus.validators import ModuleValidator
#cutom modules
from utils import json_file_to_pyobj, get_loaders
from WideResNet import WideResNet
import student_model
#suppress warning
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=0.1, type=float)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--n_shadows", default=16, type=int)
parser.add_argument("--shadow_id", default=1, type=int)
parser.add_argument("--model", default="resnet18", type=str)
parser.add_argument("--pkeep", default=0.5, type=float)
parser.add_argument("--savedir", default="exp/cifar10", type=str)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mps")
def get_trainset(train_batch_size=128, test_batch_size=10):
print(f"Train batch size: {train_batch_size}")
normalize = transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
train_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: F.pad(x.unsqueeze(0),
(4, 4, 4, 4), mode='reflect').squeeze()),
transforms.ToPILImage(),
transforms.RandomCrop(32),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])
test_transform = transforms.Compose([
transforms.ToTensor(),
normalize
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=train_transform)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=False, transform=test_transform)
return trainset, testset
@torch.no_grad()
def test(model, test_dl, teacher=False):
device = DEVICE
model.to(device)
model.eval()
correct = 0
total = 0
for inputs, labels in test_dl:
inputs, labels = inputs.to(device), labels.to(device)
if teacher:
outputs, _, _, _ = model(inputs)
else:
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = 100 * correct / total
print(f"Test Accuracy: {accuracy:.2f}%")
return accuracy
def run(teacher, student):
device = DEVICE
seed = np.random.randint(0, 1000000000)
seed ^= int(time.time())
pl.seed_everything(seed)
args.debug = True
wandb.init(project="lira", mode="disabled" if args.debug else "online")
wandb.config.update(args)
# Dataset
train_ds, test_ds = get_trainset()
# Compute the IN / OUT subset:
# If we run each experiment independently then even after a lot of trials
# there will still probably be some examples that were always included
# or always excluded. So instead, with experiment IDs, we guarantee that
# after `args.n_shadows` are done, each example is seen exactly half
# of the time in train, and half of the time not in train.
size = len(train_ds)
np.random.seed(seed)
if args.n_shadows is not None:
np.random.seed(0)
keep = np.random.uniform(0, 1, size=(args.n_shadows, size))
order = keep.argsort(0)
keep = order < int(args.pkeep * args.n_shadows)
keep = np.array(keep[args.shadow_id], dtype=bool)
keep = keep.nonzero()[0]
else:
keep = np.random.choice(size, size=int(args.pkeep * size), replace=False)
keep.sort()
keep_bool = np.full((size), False)
keep_bool[keep] = True
train_ds = torch.utils.data.Subset(train_ds, keep)
train_dl = DataLoader(train_ds, batch_size=128, shuffle=True, num_workers=4)
test_dl = DataLoader(test_ds, batch_size=128, shuffle=False, num_workers=4)
# Train
learning_rate=0.001
T=2
soft_target_loss_weight=0.25
ce_loss_weight=0.75
ce_loss = nn.CrossEntropyLoss()
optimizer = optim.Adam(student.parameters(), lr=learning_rate)
teacher.eval() # Teacher set to evaluation mode
student.train() # Student to train mode
for epoch in range(args.epochs):
running_loss = 0.0
for inputs, labels in train_dl:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
# Forward pass with the teacher model - do not save gradients here as we do not change the teacher's weights
with torch.no_grad():
teacher_logits, _, _, _ = teacher(inputs)
# Forward pass with the student model
student_logits = student(inputs)
#Soften the student logits by applying softmax first and log() second
soft_targets = nn.functional.softmax(teacher_logits / T, dim=-1)
soft_prob = nn.functional.log_softmax(student_logits / T, dim=-1)
# Calculate the soft targets loss. Scaled by T**2 as suggested by the authors of the paper "Distilling the knowledge in a neural network"
soft_targets_loss = torch.sum(soft_targets * (soft_targets.log() - soft_prob)) / soft_prob.size()[0] * (T**2)
# Calculate the true label loss
label_loss = ce_loss(student_logits, labels)
# Weighted sum of the two losses
loss = soft_target_loss_weight * soft_targets_loss + ce_loss_weight * label_loss
loss.backward()
optimizer.step()
running_loss += loss.item()
print(f"Epoch {epoch+1}/{args.epochs}, Loss: {running_loss / len(train_dl)}")
accuracy = test(student, test_dl)
#saving models
print("saving model")
savedir = os.path.join(args.savedir, str(args.shadow_id))
os.makedirs(savedir, exist_ok=True)
np.save(savedir + "/keep.npy", keep_bool)
torch.save(student.state_dict(), savedir + "/model.pt")
def main():
epochs = args.epochs
json_options = json_file_to_pyobj("wresnet16-audit-cifar10.json")
training_configurations = json_options.training
wrn_depth = training_configurations.wrn_depth
wrn_width = training_configurations.wrn_width
dataset = training_configurations.dataset.lower()
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
print("Load the teacher model")
# instantiate teacher model
strides = [1, 1, 2, 2]
teacher = WideResNet(d=wrn_depth, k=wrn_width, n_classes=10, input_features=3, output_features=16, strides=strides)
teacher = ModuleValidator.fix(teacher)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(teacher.parameters(), lr=0.1, momentum=0.9, nesterov=True, weight_decay=5e-4)
scheduler = MultiStepLR(optimizer, milestones=[int(elem*epochs) for elem in [0.3, 0.6, 0.8]], gamma=0.2)
train_loader, test_loader = get_loaders(dataset, training_configurations.batch_size)
best_test_set_accuracy = 0
dp_epsilon = 8
dp_delta = 1e-5
norm = 1.0
privacy_engine = opacus.PrivacyEngine()
teacher, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=teacher,
optimizer=optimizer,
data_loader=train_loader,
epochs=epochs,
target_epsilon=dp_epsilon,
target_delta=dp_delta,
max_grad_norm=norm,
)
teacher.load_state_dict(torch.load(os.path.join("wrn-1733078278-8e-1e-05d-12.0n-dict.pt"), weights_only=True))
teacher.to(device)
teacher.eval()
#instantiate student "shadow model"
student = student_model.Model(num_classes=10).to(device)
# Check norm of layer for both networks -- student should be smaller?
print("Norm of 1st layer for teacher:", torch.norm(teacher.conv1.weight).item())
print("Norm of 1st layer for student:", torch.norm(student.features[0].weight).item())
#train student shadow model
run(teacher=teacher, student=student)
if __name__ == "__main__":
main()