From 18426c75529a562716c1db4e45874fb39a8ab379 Mon Sep 17 00:00:00 2001 From: Akemi Izuko Date: Wed, 20 Nov 2024 12:11:10 -0700 Subject: [PATCH] Init --- README.md | 17 + cifar10-fast-simple/.gitignore | 129 ++ cifar10-fast-simple/LICENSE | 21 + cifar10-fast-simple/README.md | 99 + .../doc/a100_epoch_vs_validation_error.png | Bin 0 -> 19529 bytes cifar10-fast-simple/doc/plot.py | 28 + cifar10-fast-simple/logs/A100.txt | 2006 +++++++++++++++++ cifar10-fast-simple/logs/P100.txt | 2006 +++++++++++++++++ cifar10-fast-simple/model.py | 141 ++ cifar10-fast-simple/train.py | 278 +++ 10 files changed, 4725 insertions(+) create mode 100644 README.md create mode 100644 cifar10-fast-simple/.gitignore create mode 100644 cifar10-fast-simple/LICENSE create mode 100644 cifar10-fast-simple/README.md create mode 100644 cifar10-fast-simple/doc/a100_epoch_vs_validation_error.png create mode 100644 cifar10-fast-simple/doc/plot.py create mode 100644 cifar10-fast-simple/logs/A100.txt create mode 100644 cifar10-fast-simple/logs/P100.txt create mode 100644 cifar10-fast-simple/model.py create mode 100644 cifar10-fast-simple/train.py diff --git a/README.md b/README.md new file mode 100644 index 0000000..91ea718 --- /dev/null +++ b/README.md @@ -0,0 +1,17 @@ +## Sources + + - [cifar10-fast-simple](https://github.com/99991/cifar10-fast-simple) + +## Setup + +Get miniconda [here](https://docs.anaconda.com/miniconda/install/#quick-command-line-install) + +```bash +conda create --name mia_distilled python=3.11.2 +conda activate mia_distilled +conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia +``` + +We've found that CUDA 12.2 will still run without issue on `pytorch-cuda=12.1`. +There is also a `pytorch-cuda=12.4`. Check your system CUDA version with +`nvidia-smi`. diff --git a/cifar10-fast-simple/.gitignore b/cifar10-fast-simple/.gitignore new file mode 100644 index 0000000..b6e4761 --- /dev/null +++ b/cifar10-fast-simple/.gitignore @@ -0,0 +1,129 @@ +# Byte-compiled / optimized / DLL files +__pycache__/ +*.py[cod] +*$py.class + +# C extensions +*.so + +# Distribution / packaging +.Python +build/ +develop-eggs/ +dist/ +downloads/ +eggs/ +.eggs/ +lib/ +lib64/ +parts/ +sdist/ +var/ +wheels/ +pip-wheel-metadata/ +share/python-wheels/ +*.egg-info/ +.installed.cfg +*.egg +MANIFEST + +# PyInstaller +# Usually these files are written by a python script from a template +# before PyInstaller builds the exe, so as to inject date/other infos into it. +*.manifest +*.spec + +# Installer logs +pip-log.txt +pip-delete-this-directory.txt + +# Unit test / coverage reports +htmlcov/ +.tox/ +.nox/ +.coverage +.coverage.* +.cache +nosetests.xml +coverage.xml +*.cover +*.py,cover +.hypothesis/ +.pytest_cache/ + +# Translations +*.mo +*.pot + +# Django stuff: +*.log +local_settings.py +db.sqlite3 +db.sqlite3-journal + +# Flask stuff: +instance/ +.webassets-cache + +# Scrapy stuff: +.scrapy + +# Sphinx documentation +docs/_build/ + +# PyBuilder +target/ + +# Jupyter Notebook +.ipynb_checkpoints + +# IPython +profile_default/ +ipython_config.py + +# pyenv +.python-version + +# pipenv +# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. +# However, in case of collaboration, if having platform-specific dependencies or dependencies +# having no cross-platform support, pipenv may install dependencies that don't work, or not +# install all needed dependencies. +#Pipfile.lock + +# PEP 582; used by e.g. github.com/David-OConnor/pyflow +__pypackages__/ + +# Celery stuff +celerybeat-schedule +celerybeat.pid + +# SageMath parsed files +*.sage.py + +# Environments +.env +.venv +env/ +venv/ +ENV/ +env.bak/ +venv.bak/ + +# Spyder project settings +.spyderproject +.spyproject + +# Rope project settings +.ropeproject + +# mkdocs documentation +/site + +# mypy +.mypy_cache/ +.dmypy.json +dmypy.json + +# Pyre type checker +.pyre/ diff --git a/cifar10-fast-simple/LICENSE b/cifar10-fast-simple/LICENSE new file mode 100644 index 0000000..f4e780e --- /dev/null +++ b/cifar10-fast-simple/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2021 Thomas Germer + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. diff --git a/cifar10-fast-simple/README.md b/cifar10-fast-simple/README.md new file mode 100644 index 0000000..aaab251 --- /dev/null +++ b/cifar10-fast-simple/README.md @@ -0,0 +1,99 @@ +# Description + +This project is a simplified version of David Page's amazing blog post [How to Train Your ResNet 8: Bag of Tricks](https://myrtle.ai/learn/how-to-train-your-resnet-8-bag-of-tricks/), where a modified ResNet is trained to reach 94% accuracy in 26 seconds on a V100 GPU. + +**Update:** Also check out https://github.com/tysam-code/hlb-CIFAR10 for even faster training! + +# Usage + +```bash +git clone https://github.com/99991/cifar10-fast-simple.git +cd cifar10-fast-simple +python3 train.py +``` + +# Example output + +* Timing results using an A100 GPU only including training and excluding preprocessing and evaluation. The first run still includes some PyTorch/CuDNN initialization work and takes 15.49 sec. + +``` +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1557 + 2 194 2.86 0.7767 + 3 291 4.29 0.8756 + 4 388 5.73 0.8975 + 5 485 7.16 0.9118 + 6 582 8.59 0.9204 + 7 679 10.02 0.9294 + 8 776 11.45 0.9373 + 9 873 12.88 0.9401 + 10 970 14.32 0.9427 + +84 of 100 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409949999999995 +- 0.0012262442660416419 +``` + +### Epoch vs validation accuracy + +![epoch vs validation accuracy](https://raw.githubusercontent.com/99991/cifar10-fast-simple/main/doc/a100_epoch_vs_validation_error.png) + +* Timing results using a P100 GPU. + +``` +Preprocessing: 3.03 seconds + +epoch batch train time [sec] validation accuracy + 1 97 10.07 0.2460 + 2 194 18.60 0.7690 + 3 291 27.13 0.8754 + 4 388 35.65 0.8985 + 5 485 44.18 0.9107 + 6 582 52.70 0.9195 + 7 679 61.23 0.9272 + 8 776 69.75 0.9337 + 9 873 78.28 0.9397 + 10 970 86.81 0.9428 +``` + +Train time does not include preprocessing, evaluating validation accuracy or importing the pytorch library. + +The total time, i.e. what `time python3 train.py` would report, was 42.125 and 103.699 seconds respectively. + +* Timing results on a V100 GPU ([thanks to @ZipengFeng](https://github.com/99991/cifar10-fast-simple/issues/1#issuecomment-1057876448)) + +``` +Preprocessing: 4.78 seconds + +epoch batch train time [sec] validation accuracy + 1 97 4.24 0.2051 + 2 194 7.09 0.7661 + 3 291 9.93 0.8749 + 4 388 12.78 0.8982 + 5 485 15.62 0.9139 + 6 582 18.48 0.9237 + 7 679 21.33 0.9301 + 8 776 24.18 0.9348 + 9 873 27.04 0.9396 + 10 970 29.90 0.9422 +``` + +* Timing results on an RTX 3060 Laptop GPU (6 GB VRAM) + +``` +Files already downloaded and verified +Preprocessing: 4.67 seconds + +epoch batch train time [sec] validation accuracy + 1 97 10.50 0.2578 + 2 194 19.47 0.7549 + 3 291 28.21 0.8737 + 4 388 36.97 0.9013 + 5 485 45.72 0.9127 + 6 582 54.62 0.9213 + 7 679 63.39 0.9286 + 8 776 72.17 0.9348 + 9 873 80.95 0.9395 + 10 970 89.74 0.9412 +``` diff --git a/cifar10-fast-simple/doc/a100_epoch_vs_validation_error.png b/cifar10-fast-simple/doc/a100_epoch_vs_validation_error.png new file mode 100644 index 0000000000000000000000000000000000000000..e0d93ba4e2f1493d8d45c9d31d87c4fd2a3c0101 GIT binary patch literal 19529 zcmeIabyStz_BOmhQ3OO#1VlijJER*4DM2~~q)Qq$9TunvNJ)ouBa+gBhzLjtNP~cM zN%uQ%o^#GP-x%-jkMA4b```P-fX&|f-fP`!tvRoGUDw>NRFq{ej8ii7cHmo=_U=$vueg(n}ry_2|3m_A^Lm06{hI}$d)sN-NKOiE(Qf0l zRxLADE|qqn&d(GzX~lj_>epAbREat+ypC&=q;KokKM6OZVvTrCYx!<)b0hX*TO2pT znkPXLe~OD(iYXUfGXab#EwFzXexT-ch$K*`07fZ{^C;BIJOB5=|CxJW$}cP-fO{U3 znVDHlO)Y|zIC#hjg_7VV4SfIiuXAR0cDqf;j}lItNhU^kMOU(DXD9{=rDr@*@4MKO z9yG*t|1O3Imb|=t#G?O`hwL$Ju!SUCJn9U$mxs9b1Svxp1F};$%8J`((@>Zw0*kc$ zzlHN68<$Zif)>UASZCEhOl){y{?7w?6Wr8^wZV=!?&#>~%&IDZ?UfPj-3k8&yk_iG zQ_{fIx?RJ}%uFVBcI9;0uz|T0e|r-f*d{w9C0Og>vXnhfv2eG(Tzg=3xU=Fl6E4f+ zzWPw~WN-Sj@1Gw@`TLu5OS##}y@8i+M!kKT%4PaBr@DIh3v!-T+D*s>X^HQ$*DT-3 z%*e2sYI^b6Zn`y0`{BdHWd9S-8-ee)wp_=YS}CeGe+bjbQ-;YhF)``YdXyB^tX4;! z;1v(DRF1HPwKm`3M4_Hv5^JFGIKQ6g@}no7*S5@dkX^nvJH;;#reb8;8X8TzGE^!{ zM@L5{>gBr5YhS5PBOCg&+HEP+`+iCnL-F9q4BTY`dusIU`I@zQeZykya~JWWIxQmM z<~+M1mUHPEyD&dxIN@@htC=;`H^m6c5{DJUv#r{6lBuWEG_N^%xTT1lor zp;AR~#O3MpHC~b{j5X7mjP?8L{olol}b_vl-sELq9~J8ifMX&KsR0{o#CPG$NyGH)csC zWMYN~g`(51&c%F(1{BR)r)RBx7K9>zX z*H+~6eIzK`y}%^>O(u(~BvwTsgM=4WeZ{OwuX@PqhVjp|Brx!tL?fqXUYF;8z13Z$ zwu+63LMc;Vaei@M1>cQ`V`!we^;*g_e@{d0k5@vjQjD_m^s z>h-k`3o3<1-u1JgRB$xh;FVu2%B>v9+>zBmW@ACd@bvNiS6k<+aNLXF`M|hF6lzjK z<}t?dSWP9YC0E$dk&nEZn_Kzc&CUKyMG`uCdYhxY4Q4hrUcv3QSu-Bx^Batf(#Y+^ zfql*BA2gi|%kcmu{`R zOZ`Qf&un`%yh(93DmF{V2;K_=h5C_exBT{ukpL{d-}V6FM4981B%6N4eG)^D_q5hM zX)olp<)l0z?WN5p#?DoDvLv|R@`@_mU|!b3R#^N>K(Gidq)1p z<>P*bc6EQhvwXJ8&CSir%~jRa)s0kb?Cn*{%*sk$*HO+^SI#aKo#s<)SbgREtB`rO ze_`pF=J&<;M`&7D$9vR%=N;kpERNUJu-9$%PF74c2eHu8-?JSkxMV-_$t8Pdbu52$ z^dYxNh1~sSX@XZv$nI>HamBzpkEvH?75?|{U$e?vl*_I)WAQxJ5m^sXirgoBwG;U4 zdX@OcGDb&7-zH=DWF+F@z{stVUW#EI?Tk3su8r5l3poAe>JmMePyeV_NG9%A>m!!( z_05fRh7_OP=TU``Nk7hZiV$%#XRJ)O0wfklK9J1VWAdf^(Rbg=#)zKOKP*A}3N4xF zvcAJV-iK_)!Y$q)B_o}J8ETfDN!w;z`d!~3+xOy?IEst#EFsRLShx#hvF~VK^}+5< zg+&yOg`SZ{v_%LrDbcDjVCCT9eUj!d7P9&Xu ztS7wX_qT0WLX;mi7N_Kl8Rs>Kl{{DAcQcmx-e8tZ& zZ;Mpay|eakAlzQ;i1{*>eA}nA@1DVM817-b;S7PSq6UL&yaeyR zkAD^*BjNqA5Ztca)xm)nNe;K93D3HU!O?i=Hbp@JmmuIXY#F%R^y`pI%IA#*VLpx` z@Hnc|?cYODL3}Jjf?xR@ZjLxr8tx-w|JDH zVzTuo!NF#v!tS6i6MHu>VB&9%rBA@_%G z?nF-0m5{@R5qLMYj9QrmXs8O{wcM&FZL*@EpkQ(k#^Qf6=f8D0acZb-=$T1t-4;Qo zATQqoAv15OsHUiyyD~EouX2a7K<#e0?A-R6&Dm~}q(+~2oc$gxwAsP!w%xCt@4dS! zbiCEK-ND^;K4qfRG7MlD%x!*>uX3a?oJJOjYptSL|B7qanrB&w;VR%&Ks`SJul{WC z_b=2dR{;ExZ{Ki?MzC2#1|T|lHMmsdAi&Y{DZ;~vf-W=YnrC6jqTUs22?AK3Us0Xq zpQx8?0Z$|(EEAmqDZS=zC;1&LRL{QC-^w>SR(K$~t&txlX!;e;QzUuP6hOOOY?a+* zYaN_FOKW*Ef*Q8YWN<lb@9;E|c-d!JMLLA=oKI0LV*NR@c)b19%B> z55hznjfR`DV~*^cfPAmk**24X`3uuy_0ycq+>a!sik0DV#X7I;2o3Suw15|pm?yTj z?Nx5vd|~#_AGFoLPLnm92}cB^Wh*6QZ7&Tjy$_=7T^*|_e>`+Y6z=8suC5qbT~=bH zBq7Z!BI^NKMGtc!@yrL_v{(5T@U!3JbM~N?n^)F?eNMq)67%E+m&tRj0-g6axGm-z zP7fQ90^)Q(<+SJdrE5G|kO3?LW;D!!rxDn?L&W9qKZF{nEJ>S(ya5C7KX9 zfaimaNdt#&H$@LFMUSk!Yn{H-wuEs-YheD(p|)Z~#i)Bpgo){W<@2b3eaYj^8XDz>^v_>_Co!1jZYj&sgsprg%6Zu%hn0SjMx!1ccLk zzv0@q@6jy!NAbbz)pAZwPAhNe@64KUA`y<((4~PY#+pA;xBo7^*oJ@tQKJM^_sn6gdbZ6%Z{~1=e*-?HNX|t{4+-Sp$S+V! z<*{fPT%-7V5zp=n+^MqB;!J)Er`d+W=VC)Kg6-SL5+ zwr(SoDiQMniYi_gubHz0-zkHmeowODWV?9Q`P0_kbQp`M=-9Fx!_2nVEV^cP!=uT> zuBqvxl+f;!yIG~42B-HM6Vt~QvY4pU<`*M#?%voiaysj!fx?54i4*#UiQ@iz?WNZ& zMcrZkN2a3tGm#du!K4eTI&=&I8YG-$r5U5k0Am|zZ>yr_Iuo)9Y3|Km@!vx#G9-pE za&SC=QFk9~FGVLLvS(w+NgLLIri4>HpWCD(Fh}(@+ab`b`!kGO zK@Ad;v$JzYDB%Y19k7yK{=1dTjDL|D;iY7j(K!L%16NHgEk5s4B$!Noezp?J_?I{N zf(1RC!k)G*%)MWxVYzvEc|(V%`(6H8fDaF`USkg3*jD_EW5(l?$;w}? zL2GSm&vi;j_EbW#hN#WIe>*}6++esLxknFnNhSbcBb6f6cgIx@1ui)C0rL=4)P_Fm zH+d>4LzN{&hQ+DCt9*XQa9J}+{1Fo8yTc*Qj{}hWsKcs6DLZbQQC+RKzrVlOn;Crd z+BIIkBai5J@8V;tOt%$6wbT08jSM7G)`~fWVW{&Gx7AU$wzlS#Bbq8I-4?Cncg$Ww za(@;El!o};Xqk22*060cR2YW6ux^?f8X5UT)p?zM=$ukLHnNBxUI8eSG)rXwB}S=oXT_S9{j{c5C=*`bU5fDgvSgVxH_Z`upAEb>4LH z0Grk9>$s1^EyZtdPzt@*9*Ddjt8s^u zXaK29O;S=aa!wp*B#T?NGvC4y*5?8qY3lFaCY{Nm`r;=WVQ^1UA!7@Y<3nAN+hz+~ znueO1bCcGY`fG@7sc8s>FyG#G_j@T` z2qI9nDMCO<1B9gK)&cv^>R@Z(^IDx@vDXgXgnG7bH9g~JV|DWoBO^ck+&;C44y4Eu zl90RJs9S1LK2jp=wwTeUEUZ-HzBV93VvrFZPX-B(_XZX#8=L4V@3W9Zx6XT)nV-K>$y9hkig595Q_j6U`41#6A;PpK+DtfQ-%Fl-m{BW7U8TiGcvv% zTrcKyi8z=%UbAw)}_p_8egTZ_MgIpE;O34T^?T-yG= zf^MJQ_%`btN0F_0gdsIls)bbk4iChQj;mcLs8CcNWt!%8b8&JBA&sTR#>Sdfw0`-* zNHFPFzVaF21cZ=!i9ks*4`t{v^&^!40cwc8xQ|g#Sf~l~C!fQ30Rl2e z3|zy9!qe_G*uQ!mQj*uCon2g?uaRQ^3du#N6-F~<3}i~&-0FS}6U&UMt@fohDr87a z_mUWb$A8YLFolRmH$2ZET<1iMjjW^`$(`(g%maBU*t1#y@VvGcGoL?yPT%DZ*_NIz z*hlaz+S@$Wz#!+hPaGml)0)0NS@`1Yuf51f^YbHHOnSb&y4IgAd!=+*I_ZSzUzNG_ z+GpnN)p*ChBp9fG4@7qcQNt_fR@dXUuh*MXFW(85K+^YZgMA?TB%^Dpq+KR+cTfkIJh%Uzd%6o0tZV07cg4Tbyn zf5sU3G0DdZx?~ZvKeTeLo`2iU=pErb_@QYGdvEcoOy_kGIoe5IwO<0K`;;d6v3kj{9kcX1sl2@MUCVW(fmKEDNL&MY zN~dK)pbD$F?p>bQot|Qmea1PImAoaxs0E5<8_79v)U}`jM6?0BiF$+Lx}A9T>UnD9 zt;>`_B+sG34QI$eGDWNSNr_gmp&j~74th(P0HGr#%r4~;N<0sIk}LmFm+heFi^1_Pk<+C@#)Gnwak(CHpEDob0gxHUH==^F(mC9N! zFuxu}?8W2d`1*{!ym=|t7Da&{1Q5;=jmKk^c&WDhB|=q5N5H0VA9V_%^j_w=5onAi zns>x7LqJV99Si|BRdJ?bOddp%>Z8ByZvC3tyq;wP%~!-(fwBYOeW4PNGmE&mkwLYq zs)ptx(0{*bv+y6xcu~)w@ z)!9Zp4|6AB)BBm#nxB)?4Q1UH;MMsj7b&srcRfV(svO_HW7E&V<*4P{E4_G`ECZ=5 zmrJ|s`^cwQ8JY{n4q3`z58+-w^CO7H>fCKNoT{ED=PquY9Ih=L?@kQD?|Qz8z_%i+ zfJifuEB{~zyT}#LUo-%<053YYm_qWZ3ZZb$b`>NxUeCW~Y`Pz5tFX&DE&49=kEXWX z@_)Fou>o1`?`%6#fY?H+Zxzv2Q=<-Qey^M)#5Q4#pgE}Jd4L28aud?A-2?1Qc zN=%{bm~sAufbRJ?%j6zN$)n5DkB7_T4|mrFZ&)VYt{G#m8ACqP=HzJqY4$kFPB%E7Jg$ltED!oU#eYy(|`YqVTA04y@FbJZI)H8mCF1$RQP0kYDD z2c==$Ha{8dhCXJtRV3I~%flW1>3=-vpKIBb3>Xm+&UgTl%J)L4QSQEG2<$=fdeuMV z>yRL|47yt1h%!e5ILlM6GXn5=4Q%gEpFY7G-@Rkiy(;47J>PvBAll)@;GrJ4*HKAH zV`lmgDym%mG0Ps`6 z*)Rf%heGkMnA3rY8D%9)G5?|_(y%pVW)4#VdJ-fNj1JwvpciA0q zQ)8V)1y*93FRL|Lnwpt#zK}99BIE9}3)W4~F9C$+791+6H7p*ruN0vS0||A=X*i^^ zT1#r}Fo<>`GL9tI5BYYur@^y&n8vDkz^+|6|?TgI!bKPXbbIxD=Ik`}NW zN2{EefeP4N9pkkht-7{qS)wzudnn9K8vm`$acR5jwJtD)0oad#TBx0F?J=S$LnwlP zZ-i>NcR6%FX0#O!koEukX$34AJ*{N=^40-n)!O83&paC?By}juKd=00eN z)eBh(_vN17TiqiyryraM{`3z6+N28!u9?%UL??9Uq?3Q*+X_12Ew=3UA2}(^T}bF{ zN>~^KgualS!XDg04RJ{|{a%~BIC(n+U10bQ79RN9m`KWP4`Q60>MJk?073ofEn`4P zsXss97+69^E-tRU#O5g#V9THFF2C?}CZm7)I1>fvYXGTh<9QV$e%81<7#8{-*)zO2$vusgpQE6)fYH9IKuvtGzl>XMD^sJyz?oz2pfG565ssp;Wi{1 zRm&u|cYrDZ!j8^hY*L6_Ugi~qg|RAxT?!?^0Kfy+mGZ&w(;EoHuU^c{H!Ih3oABL@ zqqq{`?Dc^PG{h-(*n7R1ib!QX4=4WZnEl}Ppi!}9imw*r)?&c24rmcMvIxTlB0NMZ z#5RH;si>e36&Xn*5AXnw9mjXbJZ2$;f1Hz>jEpB4^W^V{LbUdoa@M2@i$W>tl~Yxv z6Y;as!RUDU*6CYXgvU_M?(49!>Za?-b#*_MPO_7Eh)hoarngs`a(o|Hy>MEkWD#9N zi#(5JKsGhi2O4P$?L%VYC6H_-_ChI zm-;G9itlY%gxkaZd9@HJf%!yYeFNwbDe;4zFoa&t`zN@1LAl`e^@inqVdeN8Vdl_o z4>FH-{xkug9TqmoRymrsGE$ikix2zMacO1cP*X)3 zDb7b@#V|e2=p9IeLKZbpLuecM_D^{_ngDx?(1KLU2&M(*5|MZyl}=WG$~5LSXdtvy zPAl(rJh!!Eg z-EuwOUj9sTcKURN2yl^Pe0;Fo2m2-q=pozxgrKeYp3iZO*c1@+>Pk%;pt>d-&o4cD z6ZZ=ZjHtyJpHF+ggWWb-ND?Tp7{ZfQdxeE}To56&=?#Pp$Os7AOmy=m;;uNItgoE# z^S+oV>0-u>goh7iT%m?;pPoVDT1XEQQ;T6Yh>DJOYdQudqaH8@{(ZFbe`!$d%K{Wd zzg*-#xr~Q*+Vl(znG)SJVD<- zaeo5&Ccu$Etu%np5H22=;R3R4fTQUF_9WDi33Y35++g$Q(Et)Cuffkr?Y2b|A<_&` znGeMFGjtD2@a|h7Brd`OGzBeSt&h1+@Csup-$ma$ZYc$&T+?955+QYssZ5G79)5WA zBoLp1Ii{Ts3RKv%b^Cu3KF{Un=SQcc6tf#tL!40s1Brt(t`N_Id)WeRp<${9jsFtC zB?LHOJ6YZG-3mAK*^pTotI_7=!h1PwfAqYq{x zAMk)Z0>o1#gnBddTA=$hW5L*! zrUnR%Ku4D!g0dr(4uh|+vuFTATc}^T2&Fj4r}jN1>BkF7GVOtY3wF zAIwqT4g3D@tM5VOo`-(LV+4`{x#4%bWMtd&`Z}42#|IElW*h~6 z0(PZ8%+AQj$;g;_-nzN(^Vh3RiBdoWv#K=XKW>G{OSzc8KDk&%#|%E8{r2sf%H6w9 zXc5!}ScOe&JOJZdndhd3-LDUK5yBZH+A_P53az;WZp+Y7d-wGoi0N9lSR%IO$r(U_ z`p2?BMGog%+-uuLz88e-LO^Tt+6@QMMGYrjP}b+Qw7Lk8FAf%`Aa_*IAP9SQqAN)-D+jZ$Y=HGoEGBKYjkk`sAI>`_gB%;h^P8r#WupkUR zb$ts_eG4M9WZwR6A?5Ta8$c2rh+*=P^wyB+6qJ?Uwa@m>v_&EWGk6DTz*eJSjFcf$ zG_=YX#RfH6Qh|6q6z-$%%gT5FD=a`ADV%A#I?-UnKkE1l;oczYTLYxlE4PV8YCZX0 zh%R~U>^1k{$PMn#r4;}C`IESi`(@V0z9q1bL^$^!#39ulV<~B%aV$leDriB-$zwCD z)d5FPGHmc{7#|Y{$J)i>PVV4;%Rk}mvv-6;bMczHyN6CyJl&GUtByr3%R3BJhoDfd zL}Cq6X6HYsN=iPpuU?=pgpt>vSI(AM9GGE*XavM%j21aU1-D!!#~Ri9_7@`O^N#=l zWRW!o)^cKDx8bx7(COCKn+~xQml(qPo?*R*^}KkS>(Y$X>A_&bR!qZ@jQ`=t1OgB` zc?Yd}GvqB=o8tYD`O`M&=Ss!Z83!n%fV-IV&VK|B1H+tJ@>A2#*v{ zCMzw5{rl%Wj!2>dZlD5kh_7NfF8?a=I$WvjFSpemb8Nm0{(&^OzmL$YWh!gzmlRxw zL7(bdJ$IcfmMn>606@|rfTXWqzRb_Y7!8=m7|p>5O z@vGi;3bhB=Sq*hMlRsg=*`$0ybs!XciuK`TCWKjRO(Kc1+~q*bs={w9{#0fIq+lqJ zO+}?CnY$^e)HY{HmHYWRr8Xgg#iRgZfR#F5K3x?h)frb75070y-PR=_Lj`n8V@N01 z)-s$)<X-i$1AD+)@E=k>{31*i@ak_%!?X%I8KDN~b}^N>@Sk{CRxY{d_oL zGmrqDC(Xc&pGblpBrXCkxH`!YqE-dGmBEm%5pbrK`=`nvf{V)l3FbUpn77`)kiT|D zc`&|*cmJ}}x~woQBmpJ?APZLLv!{d_AM7IbC~P{IX#%&m`#W0Eh7;SuF}FsxALmC5t4>dk+7)pAzstLQ%aTK_) zda^Jo@LhO0H{B4*b|BFl*mG-cx;(5k!z)Y-zRD2HmuQlkrhVM}iMdmCLhWGLFk&A~ zg(|os6bmKs6J{$#E3k6V9zqk9G}Y@K%^SbI?6q=S^nF_Y>!op%Nhcn297@t5%D2 z*pB;$zRwe7b6n9_jKSs4DaiYJcJ<3RRQJPsn3TIFMAXJ25{FgQifUzUY8o2YqFI53 z$HXGYYFms?&EyZ$nA;=utuDSFN$j5?#p_pUih&~7U<}~ww`P(*Sjq@ja30>C(!S`{ zZX_O29C{T%s&^Wy$rTbHTe5&8tT>VftL=su^0qIYP5jI2Uzh^mXAB|bk_6u>V$uO_ zB0EXgoo^`ne=CSY2~=NRi!QL-{1Me`-@j;=S-qM0VD<{BMJpzXiW;n14{Okc;La-d zJN7CxtkVNltQs&ASe9;#T0&~`0+heitH@yu(m42Rdo{HU%uN>O(e@2RUW+7_-|Wlh z*AjwVyI!;1!Be0D%UY+2bQ{Amun|A&yxozYf)LbD9D-<(g~U`~)IZT$1BN>@U=`|T zLl8a8Xx;LvbFLZt>mdT=?8-55+Si*Y*KPme-eP$q$DiD%U&?+9cpMYB!4l6WH-(?d zqQd@cc+kp2{Tq?-KNzyI%%tlSgR-nwyMp8+h))k$ju&p#Ao90_SxEv#D$RLJ3`C?y zj2a(HOX=jn(hA8LBoOsTU-f@9kkRQqAF+L(pf$azZLbkFm$JkCbxI)(_3SwRi9Ck! zu|k0$rG1huZe-IE-e$gs+T7ek-HiqwNGt!wO1DqN^qUZ2%KZm+JLD z$tccxv&bPIe>}{0Jn^-To&i?%2v(H`PYU6s5KjTHcd{VzDJ9?fPs)s+tbi?J14ZQb z&Q8%)t|aB`hwR#s7l$W)_8f2L-x@qU9y|U{eC+G;9vLFG1EKfjM}B_w2u0O!db|e6 z1jlf24qbDdgoNRLNRA@~HyY;!0M0ekn7z%jInt{(F3xJ$%l&QgxZ2~}hO7;EZ>|LY zGJm98_V`T@Xrop2}vIGg9(&yzHUHgc%6=5Jo)*?;k1%i``U6Vn2{J5CutzANy- z5>dTb->3LIh@!qTWTz#H9$PpF!x+;rxY_-s<>vN6{hhP(sl^z8EsS5I`QX^3>c?ti z0gh3U{a$+zcpBp0fct?2i@=x(3|W?&_vW`cl>d_F^>dKecSA{cc0hGfQPhv=gjV!? z`gF+>|MXT~hse}%VMSQS90?ARl<@XW3X=2&Wg*4mYKFWo`h}-!L)*+78VN{Te0vW= z`qxs#{LkJ5S!QlQ!$W+^-shHsOCvZFZAK6tqS8>*)EQMK}D%r;$_ z&CNTDo3~$KzI@pO??Xb9!L_7e&`-zHt{^TAWQX1kf~R}4_0y6Y_F3IthxPpNHIFaz zNXPHr>qNq;+(5j#aOYUtc4?xUj3hK<$)K_$yQ%w1OYjR)^g@Px0ek@IBK2R2r zLg&jA+q3ts8I4glr^1!fZekG-I&4i6iF&PsnU%UP zXCWW4dNN|^wbDl&c?|>A?Zg=HQUUfdH^D#CoBN^*&wSbbRLU9wcVs- z{)y8N*>1XPKNj9B$Fa_u|4AW|P^{eH!n_InY2t>W_e}#ca==bp{LUvM#E60iS(cU8 zFcVAgpPnA{ZAbQ1BjOuB+i*@-J=58;tw5K79Qe5*-Zt~zVbQ%_FEq9ubEQ1}%UQx1 z#=;`7BAEMNJrzQ;m7biWp{1E`By#w^UPQ$h8Qm~B7J-0dT3^wey^!Lw-iHSjP1#7g ztAD16EL^IRD(Xpk)wJo>puA9%R=iVkA>;D;{T zeH2YEQgc_vJm_r4Cww>qrPL2S>kOfw^Aw@{^pL%DI+bEsSSK?-MK3!dkg$=*y#TcT z@5=5h!p(>=t-8iUN%<1W3R(@A0wKit9cwj zH|#S%nVOgA2#K+xCNuVqvQWua{hp*Ldb$->ki^(3zL(X<6-BB=ID|w3Km6|+TqP&# zRl#u~Q!oZ6MU*588^gy>9rfT+gG5eVZr{#t=j%jX8r>>5;uA)@jHD!XRQN4+SAT+yrpg4){GR+H_?M%eNVRPJilKpO`%yykH{W;`n zfO~I4)UZ)2fn5&JYcfTG-KnWg(p}UW7~Vu3Rzc)d4n=-^btBi|SK-HGiReAACb$I$ zXvMc`6|8nmvoQPG>0Gxil+23-YT z7>20#x@!%aJ>U#v2ZKX$S?L|U=_CcOQm~}6(&;dD;8OLpD1I*HJgZJP5|(LX>0^kS|eZW+^5tIjvwV=n&XQ?zB?hZDZbN}>c;^~ltpDcx=kK2H89CT z0#odkM*P=^4dn)s(iRpLs;5JRUFVYA6(RsrfK%a2cLJrpQ;7ZaX#lvAU|$E36)}iB z#Aztb6SXjcbLTg9l{e!((ayrV9N36zV;K(#yH<$Qlb+zL}wUh@Y_vZIX>e+O=l+8{*FRbW_Lc=YKL|8ijp#Cy=JGI z=v(C-e?={ZYQ_r}O?ByHR+&7*;_9Tx{;|OoC5?K?sj7=moB#B@R6scown$2_aHMpR z9E~q+S3HnNy$;mR9ibMcboIoqc=DI+IkvSf4l=SbZY?IPW9LkuM8TXNG=Re*JKH&@9)J#POANg!l`ux|) z^EUD!<(PEcj`qmYT+Y>cm90lNzBsu%p|z(0dvX+vzk2Hc?c>wdY`C>ksqWO21Zb4|R0Bn6KBm zH;DU);Zt8ZRTT6Cl=oIcNA*I zL+`Iqwwr`k(+MRc8rqAjBo3>Psy{5buY(bQPY{j82~9L0+JHc*^kE%h&c8T~rAtP0 zu0pe}Lc)x6kHmt;@{-#&7URhMn|v3KFnsk@`&?-^a+-7&3$+R-x)CFD%;DAoA$LsJ zyTnO>->xoweLr$9n{$1>5q-LZ8Nhd~`)8WGvWYhKLJ_|_n5(P#QlCZh3hC&k z+qE#%f8}EuD1zYT_BvQ~&Le1aW7{7Mzh`R&y@QM50blAKC^HLB zaoMr`COj7Tz}tot$PWI8`rz+ce5Y>@-u}2B!fPUR+XMOq7}#a!pz8zrb=;I(nT4Bu zM}6^{-_EJneITGLW_<_Cy_&D?>2{n>XY!cX?X^3(CYkACCG^XvCrTwvo8rf`1&RyO zU8cG!(;^hG^1|(TK&ZB%K|V;m^@TaAu=T#@*=V41v?jFszo~1U&h2WJe=cs%v(cOu z-$`!ooGsH&ctekV?ULgn+2Qovtk1Vf=@vot-cjfzcvHifnE39=mvAi()_ES@415oz zakM6d?p0e&^t|Jfqxup#zEyC$nQNBk;gbIC$6A!7t?Os|9yj@cg3{oPgC1$vk(gl5 zdwZCiqVt_$?9^tc(xrJoLGcJO*ubyp6>i}@bPF`jY0@54xq9>7wJW@AuVsnly52X> z_Hbr=Cu?A~_4BaU>Uns1kZ(ZT?b+>EzseNe$!Si~~KO#`uDB!>YV^l|x~JUvA>DVG6#6#;r=m zRgPWjhQVyOk3b4M@M4HLz*BRsozCg`k`=ak`9;rlOG|kQst%~$sos3~Rq%P_P`=ej zEn79Scr}*r%kgY~E74a6mPOg?Fq9rBpP`67dDiOotDrTidB!8?Y9g9W!0xsCujpUv zmeaeJE*mijtN>>~B-dyLLwl*R{i362T->onJolu!Wi8((KH0Cx%8RVJM8GS5Nn`p- z;?{t__!pb-tK{ewexj!Huu7o^#nTjgfQ^;f)BA{7-^$uQaHaI4$h>NG1H32Fg0Okn zVSVLYZB&M@tmzvp4OU)P3jXa^{J>n3H?LqLKQBu;TC9QD*G;LuI4@USGsGx@h*P5> zwX#^bx2@Rp@qo7#WAvpTfhL~Pxdj|?vN5tFC3L0l-_W-V#3%|6N>e{Y$c#?no2Kev zKQql;?ADAZ~jE{0P>rt!M7zn^1_;wG7{+ zocxlVyc|CpWB{kitd`&mI<0Mna+-^Ao z69q#93|CD{$<-;Z-KD3DEb+U3_;~Lki>=-%CENC(OLZt?ppxQr z_=^q4HrL@ous5|?SAHMbvup-Wp=9nGXZQeAD1m8dp376Iq-*4bV)v*X<$TO4l9y){ z&y%CnC9jjc-to0~3G?3Z!b;%r@aukR!4*D1(*mX7w7L>bz3Vr9>a9IRs#S!-eC(Px z648*_<0*@s5}LnSZ>UJX{8K}83xn2Z`}E)hLcDV}>g)N6j9%lGB~kC-mMwTO`^z!* z7mwg*Lz=;+6n;c5)?yb(({8$~N>?iH`KDwsTS|?WZ;rM!vfBh1u;kko6V=4#EGV!U zbZ^z_0&oC|$wxLy(kQ9nJ?({=e9_v%lf!_#r6bvuTPkiVmnwMcD>ghnn+}Rwk_MIX z)GK$A_AmGGs+zheA0MYPA^s*+=(J-Tuu*^fMoDc+mR`S^6R-au#8ko9G`v78PvyYo zIM04>^NnGWFpq6nDyXUfXuzE_AN1kBXd+uQncUUJ&*9f z6``TIWMk55(6qsVoCTK;p%m3i@jv+_XiNi5RbMo;v}`~aIoM1&eTWW$-}_LZftkY%D1v>LEbfgE)uX?xjXh^n^Kv{-+`LM82v`Q0&KNX5hc*ZS(={s z5v(ycf%_{M;?m2ktsR{Q*{%eXrfCN8{a0M(--$|T%6}E;mcB7=4veFijskbhag5Wr z=Uf~`dZ$v{otAlUj1pp>?+ERs1}j!Bm(%Yr^dpE9%M`pR^mH~!d3nsu7Ns|eL9B{g zL3)gwxr{Pe$Qu1Mb<_p`ZQz z(1*gp$5+v|Q&m;m_U)=f=morAOvQLv4rA~jxR9(k#Rl>0F9p4 zd*|`-UaPnkXo(>4bc7B*HuBrgBxcn~g|3_>_lCnHK4{nlXR!f(kd&vVr$wu6GLI)WS;y1hMgI@^5eGT+iY2Uqj_t(ji3pC~o*Ls#hA!z8g zZw^`;LQ)%RV($LSR|dPb^$p(h1R7a0P`mSBc6r*xhF)L?;062CwaD`OR0Q2%8_Nx% z^pcBk1(#<&NRUY1*)QV87q}!gpf4#rc)$S;y9Gvs!4c^dWz9grwHxS=;xpg0XY5MIi-~?IuQ!!%S2lnu@R#;K5Ely$O zd;xNNaQQuG4!SZ3{c${xe{qWL{4%v@wFw78+ZyC^q3Ji=W|bq*wond7rZYv{2wh`< z_>*524&xM?@gUCU z!ZE4_rgV=;>|iA?hQ2;fTl#?bt-M%FQci7IyX@ zGp?Qd(0hoOrs0*$92|ql_fT~CpQz_+72f%0`%<_Zn}d9cIP%bg<`9~a5br5?R5;+% ztOp8oKMp-cc0y<905#$o6`V_i=L@Vp7+@nB*$H82w|@2nrm zeS!;ZPd>ZC43>06P=e3helUSxeA5Ah{zs@AD2N|GVjmR45T#$Z?uK1H7}r?`w+jsb#(BU zn3{%&`5ur$+i2L-=6(m<2xz}LwFKKsD{^@V(cvj64nQr%Q7m1AiE$8MlY(!H2dE#s z>^|!^WW3A;{u7cfS~!~=b6rs2G$b4Re~Ze>ZbSA*%uUOrsP$)z0VwLPU^#OMZTz}Xc?vuH!>?1cbgaP+@qhFkCx44d0vCA5KTSG`)jROWk# zmRAFU4(TR_+={q%k#9}dg6?{LCJz{q3P?Ce4=IuiShR~Y8vKsqkKPQGS|aUkJ&3(Z zk^Pf2(s~5RL3qm-v+>Fu6qV%6?CcG`gibj*Ijg@OU~;|;uvz{q#JnZ?;v0g_8BR-u zm1Kd&q{v$LfCnWVX76 z0KIkcd8eQp^QtbuZTvL(6u0cr=cn`|5s{J4jOPCQ;qzpN90BahJ6Z&sGzVT*hmNN8 zeU~m#Z8$Q*?yF#>QH2&9*reOfZa|zTI}*Bm`!0KoB3OVOR`h|)k;OPqpbDrYRFG~& z3wo2{%Z={ezaO~{S#-oh;-^A z4oHZoHt?-H5gG8^H&zfA0MqyR?v7;xI<@*c({>h*A^6DmB7ZajM)yqF4W$65jx*vb z2ZOJ3YrQJ!jHn=-1&5!So}ON$-MI^R-Jul1wEbP(2K7Fl{5BINAgC&F)UH3haD|dp z9&z|VeB=Q%g-FKW>PCz-e>xLLM6@8%K$FHc;NV3dku(O247LHF)=rO8p~^7+=_E#_ z(&(@f7wVKq!d~JQ#zDotw*7Am?|7LiAm{US4wOn5(t!N`?F+9qPf;H?zU~<;uNcDd PMaj!3OBYE#diuWr= 94.0 % accuracy +Min accuracy: 0.9404 +Max accuracy: 0.9404 +Mean accuracy: 0.9404 +- 0.0 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1750 + 2 194 2.86 0.7731 + 3 291 4.29 0.8747 + 4 388 5.72 0.8983 + 5 485 7.16 0.9131 + 6 582 8.59 0.9201 + 7 679 10.02 0.9289 + 8 776 11.45 0.9351 + 9 873 12.88 0.9390 + 10 970 14.31 0.9399 + +1 of 2 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9404 +Mean accuracy: 0.94015 +- 0.00024999999999997247 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1826 + 2 194 2.86 0.7749 + 3 291 4.29 0.8765 + 4 388 5.73 0.8994 + 5 485 7.16 0.9108 + 6 582 8.59 0.9192 + 7 679 10.02 0.9280 + 8 776 11.45 0.9334 + 9 873 12.88 0.9386 + 10 970 14.31 0.9417 + +2 of 3 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.9406666666666667 +- 0.0007586537784494201 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1823 + 2 194 2.86 0.7603 + 3 291 4.29 0.8788 + 4 388 5.73 0.8995 + 5 485 7.16 0.9131 + 6 582 8.59 0.9219 + 7 679 10.02 0.9288 + 8 776 11.45 0.9332 + 9 873 12.88 0.9373 + 10 970 14.32 0.9417 + +3 of 4 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.940925 +- 0.000794905654779253 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1855 + 2 194 2.86 0.7723 + 3 291 4.29 0.8809 + 4 388 5.73 0.8989 + 5 485 7.16 0.9124 + 6 582 8.59 0.9221 + 7 679 10.02 0.9278 + 8 776 11.45 0.9340 + 9 873 12.88 0.9373 + 10 970 14.32 0.9406 + +4 of 5 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.94086 +- 0.0007227724399837298 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2350 + 2 194 2.86 0.7790 + 3 291 4.29 0.8760 + 4 388 5.73 0.9009 + 5 485 7.16 0.9133 + 6 582 8.59 0.9229 + 7 679 10.02 0.9301 + 8 776 11.45 0.9367 + 9 873 12.88 0.9399 + 10 970 14.31 0.9415 + +5 of 6 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.9409666666666666 +- 0.000701585505994987 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1847 + 2 194 2.86 0.7648 + 3 291 4.29 0.8751 + 4 388 5.73 0.8963 + 5 485 7.16 0.9097 + 6 582 8.59 0.9185 + 7 679 10.02 0.9262 + 8 776 11.45 0.9317 + 9 873 12.88 0.9378 + 10 970 14.32 0.9402 + +6 of 7 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.9408571428571427 +- 0.0007027642214999471 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1709 + 2 194 2.86 0.7574 + 3 291 4.29 0.8743 + 4 388 5.73 0.9000 + 5 485 7.16 0.9133 + 6 582 8.59 0.9208 + 7 679 10.02 0.9288 + 8 776 11.45 0.9339 + 9 873 12.88 0.9379 + 10 970 14.32 0.9401 + +7 of 8 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.9407625 +- 0.0007034513131695864 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2391 + 2 194 2.86 0.7724 + 3 291 4.30 0.8747 + 4 388 5.73 0.8976 + 5 485 7.16 0.9073 + 6 582 8.59 0.9189 + 7 679 10.02 0.9273 + 8 776 11.45 0.9321 + 9 873 12.88 0.9378 + 10 970 14.32 0.9400 + +8 of 9 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.9406777777777777 +- 0.0007051836290054496 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2016 + 2 194 2.86 0.7633 + 3 291 4.29 0.8720 + 4 388 5.73 0.8971 + 5 485 7.16 0.9122 + 6 582 8.59 0.9195 + 7 679 10.02 0.9273 + 8 776 11.45 0.9318 + 9 873 12.88 0.9376 + 10 970 14.31 0.9414 + +9 of 10 runs >= 94.0 % accuracy +Min accuracy: 0.9399000000000001 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.9407499999999999 +- 0.0007032069396699712 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1618 + 2 194 2.86 0.7815 + 3 291 4.29 0.8726 + 4 388 5.73 0.8981 + 5 485 7.16 0.9126 + 6 582 8.59 0.9182 + 7 679 10.02 0.9271 + 8 776 11.45 0.9331 + 9 873 12.88 0.9367 + 10 970 14.31 0.9393 + +9 of 11 runs >= 94.0 % accuracy +Min accuracy: 0.9393 +Max accuracy: 0.9417000000000001 +Mean accuracy: 0.9406181818181817 +- 0.0007894971723343771 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1863 + 2 194 2.86 0.7682 + 3 291 4.29 0.8746 + 4 388 5.73 0.8963 + 5 485 7.16 0.9096 + 6 582 8.59 0.9203 + 7 679 10.02 0.9262 + 8 776 11.45 0.9339 + 9 873 12.88 0.9392 + 10 970 14.32 0.9424 + +10 of 12 runs >= 94.0 % accuracy +Min accuracy: 0.9393 +Max accuracy: 0.9424 +Mean accuracy: 0.9407666666666664 +- 0.000902157906848292 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2488 + 2 194 2.86 0.7649 + 3 291 4.30 0.8752 + 4 388 5.73 0.8987 + 5 485 7.16 0.9114 + 6 582 8.59 0.9201 + 7 679 10.02 0.9285 + 8 776 11.45 0.9343 + 9 873 12.88 0.9371 + 10 970 14.32 0.9400 + +11 of 13 runs >= 94.0 % accuracy +Min accuracy: 0.9393 +Max accuracy: 0.9424 +Mean accuracy: 0.940707692307692 +- 0.0008905154414603322 + +Files already downloaded and verified +Preprocessing: 1.16 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1639 + 2 194 2.86 0.7551 + 3 291 4.29 0.8769 + 4 388 5.73 0.8994 + 5 485 7.16 0.9134 + 6 582 8.59 0.9239 + 7 679 10.02 0.9295 + 8 776 11.45 0.9362 + 9 873 12.88 0.9427 + 10 970 14.32 0.9437 + +12 of 14 runs >= 94.0 % accuracy +Min accuracy: 0.9393 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9409214285714284 +- 0.001153366854925543 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1894 + 2 194 2.86 0.7581 + 3 291 4.29 0.8751 + 4 388 5.73 0.8988 + 5 485 7.16 0.9123 + 6 582 8.59 0.9181 + 7 679 10.02 0.9268 + 8 776 11.45 0.9326 + 9 873 12.88 0.9372 + 10 970 14.31 0.9401 + +13 of 15 runs >= 94.0 % accuracy +Min accuracy: 0.9393 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9408666666666664 +- 0.0011329411085999024 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1954 + 2 194 2.86 0.7762 + 3 291 4.30 0.8809 + 4 388 5.73 0.9007 + 5 485 7.16 0.9116 + 6 582 8.59 0.9191 + 7 679 10.02 0.9281 + 8 776 11.45 0.9331 + 9 873 12.89 0.9382 + 10 970 14.32 0.9399 + +13 of 16 runs >= 94.0 % accuracy +Min accuracy: 0.9393 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9408062499999997 +- 0.0011216443007923751 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1811 + 2 194 2.86 0.7517 + 3 291 4.29 0.8720 + 4 388 5.73 0.8982 + 5 485 7.16 0.9123 + 6 582 8.59 0.9206 + 7 679 10.02 0.9275 + 8 776 11.45 0.9339 + 9 873 12.88 0.9369 + 10 970 14.32 0.9386 + +13 of 17 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.940676470588235 +- 0.001205638425831252 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2231 + 2 194 2.86 0.7598 + 3 291 4.29 0.8750 + 4 388 5.73 0.8980 + 5 485 7.16 0.9117 + 6 582 8.59 0.9219 + 7 679 10.02 0.9281 + 8 776 11.45 0.9345 + 9 873 12.88 0.9390 + 10 970 14.31 0.9400 + +14 of 18 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9406388888888887 +- 0.0011818718152381616 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1511 + 2 194 2.86 0.7385 + 3 291 4.30 0.8708 + 4 388 5.73 0.8956 + 5 485 7.16 0.9111 + 6 582 8.59 0.9205 + 7 679 10.02 0.9294 + 8 776 11.45 0.9353 + 9 873 12.88 0.9393 + 10 970 14.32 0.9429 + +15 of 19 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.940757894736842 +- 0.0012562751079339411 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1677 + 2 194 2.86 0.7383 + 3 291 4.29 0.8695 + 4 388 5.73 0.8973 + 5 485 7.16 0.9098 + 6 582 8.59 0.9175 + 7 679 10.02 0.9266 + 8 776 11.45 0.9333 + 9 873 12.88 0.9389 + 10 970 14.31 0.9418 + +16 of 20 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9408099999999999 +- 0.0012453513560437605 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2051 + 2 194 2.86 0.7653 + 3 291 4.29 0.8757 + 4 388 5.73 0.9009 + 5 485 7.16 0.9141 + 6 582 8.59 0.9214 + 7 679 10.02 0.9283 + 8 776 11.45 0.9339 + 9 873 12.88 0.9407 + 10 970 14.32 0.9419 + +17 of 21 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9408619047619047 +- 0.0012373074416714115 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2169 + 2 194 2.86 0.7749 + 3 291 4.29 0.8800 + 4 388 5.73 0.8976 + 5 485 7.16 0.9109 + 6 582 8.59 0.9191 + 7 679 10.02 0.9282 + 8 776 11.45 0.9330 + 9 873 12.88 0.9379 + 10 970 14.32 0.9408 + +18 of 22 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9408590909090908 +- 0.0012089285605290504 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1385 + 2 194 2.86 0.7481 + 3 291 4.29 0.8719 + 4 388 5.73 0.8993 + 5 485 7.16 0.9103 + 6 582 8.59 0.9226 + 7 679 10.02 0.9296 + 8 776 11.45 0.9358 + 9 873 12.88 0.9399 + 10 970 14.32 0.9421 + +19 of 23 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9409130434782608 +- 0.0012091334834162717 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1937 + 2 194 2.86 0.7671 + 3 291 4.29 0.8770 + 4 388 5.73 0.8984 + 5 485 7.16 0.9132 + 6 582 8.59 0.9207 + 7 679 10.02 0.9302 + 8 776 11.45 0.9339 + 9 873 12.88 0.9376 + 10 970 14.31 0.9388 + +19 of 24 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9408249999999999 +- 0.0012567318727556903 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1742 + 2 194 2.86 0.7835 + 3 291 4.29 0.8715 + 4 388 5.73 0.9001 + 5 485 7.16 0.9076 + 6 582 8.59 0.9186 + 7 679 10.02 0.9259 + 8 776 11.45 0.9344 + 9 873 12.88 0.9387 + 10 970 14.31 0.9422 + +20 of 25 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9408799999999999 +- 0.0012604761005271072 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1694 + 2 194 2.86 0.7748 + 3 291 4.29 0.8763 + 4 388 5.73 0.8980 + 5 485 7.16 0.9105 + 6 582 8.59 0.9214 + 7 679 10.02 0.9286 + 8 776 11.45 0.9353 + 9 873 12.88 0.9401 + 10 970 14.32 0.9432 + +21 of 26 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9409692307692308 +- 0.0013140569097760556 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2075 + 2 194 2.86 0.7711 + 3 291 4.29 0.8775 + 4 388 5.73 0.9025 + 5 485 7.16 0.9130 + 6 582 8.59 0.9185 + 7 679 10.02 0.9285 + 8 776 11.45 0.9347 + 9 873 12.88 0.9377 + 10 970 14.31 0.9400 + +22 of 27 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9409333333333334 +- 0.001302419401074905 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1658 + 2 194 2.86 0.7553 + 3 291 4.29 0.8735 + 4 388 5.73 0.8976 + 5 485 7.16 0.9133 + 6 582 8.59 0.9219 + 7 679 10.02 0.9284 + 8 776 11.45 0.9345 + 9 873 12.88 0.9379 + 10 970 14.32 0.9405 + +23 of 28 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9409178571428571 +- 0.0012814761497776687 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1990 + 2 194 2.86 0.7628 + 3 291 4.29 0.8770 + 4 388 5.73 0.8993 + 5 485 7.16 0.9130 + 6 582 8.59 0.9223 + 7 679 10.02 0.9284 + 8 776 11.45 0.9336 + 9 873 12.88 0.9385 + 10 970 14.31 0.9424 + +24 of 29 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9437000000000001 +Mean accuracy: 0.9409689655172414 +- 0.001287902183123281 + +Files already downloaded and verified +Preprocessing: 1.30 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1776 + 2 194 2.86 0.7540 + 3 291 4.29 0.8721 + 4 388 5.73 0.8991 + 5 485 7.16 0.9127 + 6 582 8.59 0.9215 + 7 679 10.02 0.9278 + 8 776 11.45 0.9356 + 9 873 12.88 0.9391 + 10 970 14.31 0.9438 + +25 of 30 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410633333333334 +- 0.0013644249908131912 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1706 + 2 194 2.86 0.7568 + 3 291 4.29 0.8783 + 4 388 5.73 0.9007 + 5 485 7.16 0.9121 + 6 582 8.59 0.9215 + 7 679 10.02 0.9264 + 8 776 11.45 0.9336 + 9 873 12.88 0.9386 + 10 970 14.32 0.9402 + +26 of 31 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410354838709678 +- 0.0013508774656345519 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1975 + 2 194 2.86 0.7504 + 3 291 4.29 0.8703 + 4 388 5.73 0.8995 + 5 485 7.16 0.9133 + 6 582 8.59 0.9207 + 7 679 10.02 0.9271 + 8 776 11.45 0.9335 + 9 873 12.88 0.9376 + 10 970 14.31 0.9404 + +27 of 32 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.941015625 +- 0.0013341920249255808 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2214 + 2 194 2.86 0.7783 + 3 291 4.29 0.8785 + 4 388 5.73 0.9015 + 5 485 7.16 0.9117 + 6 582 8.59 0.9215 + 7 679 10.02 0.9281 + 8 776 11.45 0.9332 + 9 873 12.88 0.9373 + 10 970 14.32 0.9387 + +27 of 33 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409454545454546 +- 0.001372476396902734 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1526 + 2 194 2.86 0.7857 + 3 291 4.30 0.8825 + 4 388 5.73 0.9006 + 5 485 7.16 0.9116 + 6 582 8.59 0.9216 + 7 679 10.02 0.9292 + 8 776 11.45 0.9344 + 9 873 12.88 0.9377 + 10 970 14.32 0.9409 + +28 of 34 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409441176470589 +- 0.001352164099088963 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1339 + 2 194 2.86 0.7638 + 3 291 4.30 0.8749 + 4 388 5.73 0.8977 + 5 485 7.16 0.9115 + 6 582 8.59 0.9203 + 7 679 10.02 0.9270 + 8 776 11.45 0.9335 + 9 873 12.89 0.9372 + 10 970 14.32 0.9387 + +28 of 35 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9408799999999999 +- 0.0013841552348944548 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1608 + 2 194 2.86 0.7766 + 3 291 4.29 0.8748 + 4 388 5.73 0.8990 + 5 485 7.16 0.9151 + 6 582 8.59 0.9228 + 7 679 10.02 0.9298 + 8 776 11.45 0.9352 + 9 873 12.89 0.9407 + 10 970 14.32 0.9431 + +29 of 36 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409416666666667 +- 0.0014127150770374389 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1548 + 2 194 2.86 0.7627 + 3 291 4.29 0.8766 + 4 388 5.73 0.8994 + 5 485 7.16 0.9129 + 6 582 8.59 0.9186 + 7 679 10.02 0.9283 + 8 776 11.45 0.9340 + 9 873 12.88 0.9376 + 10 970 14.32 0.9406 + +30 of 37 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409324324324325 +- 0.0013945945945945983 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1331 + 2 194 2.86 0.7475 + 3 291 4.29 0.8756 + 4 388 5.73 0.8987 + 5 485 7.16 0.9111 + 6 582 8.59 0.9212 + 7 679 10.02 0.9299 + 8 776 11.45 0.9353 + 9 873 12.88 0.9381 + 10 970 14.32 0.9400 + +31 of 38 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409078947368421 +- 0.0013841930156987322 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1920 + 2 194 2.86 0.7703 + 3 291 4.30 0.8717 + 4 388 5.73 0.8999 + 5 485 7.16 0.9127 + 6 582 8.59 0.9215 + 7 679 10.02 0.9291 + 8 776 11.45 0.9335 + 9 873 12.88 0.9372 + 10 970 14.32 0.9409 + +32 of 39 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409076923076923 +- 0.001366332282179358 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2233 + 2 194 2.86 0.7744 + 3 291 4.29 0.8774 + 4 388 5.73 0.9004 + 5 485 7.16 0.9103 + 6 582 8.59 0.9180 + 7 679 10.02 0.9274 + 8 776 11.45 0.9324 + 9 873 12.88 0.9362 + 10 970 14.32 0.9401 + +33 of 40 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9408875 +- 0.0013550253687662117 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1517 + 2 194 2.86 0.7652 + 3 291 4.30 0.8746 + 4 388 5.73 0.9017 + 5 485 7.16 0.9127 + 6 582 8.59 0.9223 + 7 679 10.02 0.9287 + 8 776 11.45 0.9352 + 9 873 12.88 0.9385 + 10 970 14.32 0.9417 + +34 of 41 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409073170731707 +- 0.0013442543030141032 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1398 + 2 194 2.86 0.7663 + 3 291 4.29 0.8771 + 4 388 5.73 0.9026 + 5 485 7.16 0.9138 + 6 582 8.59 0.9227 + 7 679 10.02 0.9285 + 8 776 11.45 0.9327 + 9 873 12.88 0.9382 + 10 970 14.31 0.9410 + +35 of 42 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409095238095239 +- 0.0013282300295272198 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1710 + 2 194 2.86 0.7369 + 3 291 4.30 0.8745 + 4 388 5.73 0.8990 + 5 485 7.16 0.9128 + 6 582 8.59 0.9217 + 7 679 10.02 0.9298 + 8 776 11.45 0.9341 + 9 873 12.88 0.9372 + 10 970 14.32 0.9415 + +36 of 43 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409232558139534 +- 0.0013157078224644379 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1305 + 2 194 2.86 0.7610 + 3 291 4.29 0.8699 + 4 388 5.73 0.9012 + 5 485 7.16 0.9139 + 6 582 8.59 0.9224 + 7 679 10.02 0.9303 + 8 776 11.45 0.9345 + 9 873 12.88 0.9401 + 10 970 14.31 0.9424 + +37 of 44 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409568181818181 +- 0.0013191591204718153 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1573 + 2 194 2.86 0.7738 + 3 291 4.30 0.8788 + 4 388 5.73 0.8990 + 5 485 7.16 0.9100 + 6 582 8.59 0.9157 + 7 679 10.02 0.9245 + 8 776 11.45 0.9314 + 9 873 12.89 0.9369 + 10 970 14.32 0.9404 + +38 of 45 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409444444444444 +- 0.0013069992018284683 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1518 + 2 194 2.86 0.7656 + 3 291 4.29 0.8689 + 4 388 5.73 0.8969 + 5 485 7.16 0.9113 + 6 582 8.59 0.9207 + 7 679 10.02 0.9282 + 8 776 11.45 0.9349 + 9 873 12.88 0.9388 + 10 970 14.31 0.9423 + +39 of 46 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409739130434782 +- 0.0013077419607540432 + +Files already downloaded and verified +Preprocessing: 1.21 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1756 + 2 194 2.86 0.7715 + 3 291 4.30 0.8784 + 4 388 5.73 0.8988 + 5 485 7.16 0.9130 + 6 582 8.59 0.9207 + 7 679 10.02 0.9282 + 8 776 11.45 0.9339 + 9 873 12.89 0.9380 + 10 970 14.32 0.9420 + +40 of 47 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.940995744680851 +- 0.0013022006654544492 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1981 + 2 194 2.86 0.7759 + 3 291 4.29 0.8776 + 4 388 5.73 0.8999 + 5 485 7.16 0.9135 + 6 582 8.59 0.9210 + 7 679 10.02 0.9299 + 8 776 11.45 0.9345 + 9 873 12.88 0.9395 + 10 970 14.31 0.9415 + +41 of 48 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410062499999999 +- 0.001290575816254126 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1363 + 2 194 2.86 0.7775 + 3 291 4.30 0.8744 + 4 388 5.73 0.8985 + 5 485 7.16 0.9094 + 6 582 8.59 0.9211 + 7 679 10.02 0.9283 + 8 776 11.45 0.9341 + 9 873 12.88 0.9398 + 10 970 14.32 0.9426 + +42 of 49 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.941038775510204 +- 0.0012970636109415849 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2250 + 2 194 2.86 0.7678 + 3 291 4.29 0.8731 + 4 388 5.73 0.9009 + 5 485 7.16 0.9141 + 6 582 8.59 0.9226 + 7 679 10.02 0.9290 + 8 776 11.45 0.9354 + 9 873 12.88 0.9384 + 10 970 14.32 0.9398 + +42 of 50 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410139999999998 +- 0.0012956866905236 + +Files already downloaded and verified +Preprocessing: 1.16 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1939 + 2 194 2.86 0.7838 + 3 291 4.29 0.8782 + 4 388 5.73 0.9011 + 5 485 7.16 0.9123 + 6 582 8.59 0.9210 + 7 679 10.02 0.9266 + 8 776 11.45 0.9322 + 9 873 12.88 0.9383 + 10 970 14.32 0.9413 + +43 of 51 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410196078431371 +- 0.0012835336652158391 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2084 + 2 194 2.86 0.7610 + 3 291 4.29 0.8758 + 4 388 5.73 0.8994 + 5 485 7.16 0.9115 + 6 582 8.59 0.9219 + 7 679 10.02 0.9290 + 8 776 11.45 0.9323 + 9 873 12.88 0.9375 + 10 970 14.32 0.9402 + +44 of 52 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410038461538459 +- 0.00127610608711115 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1918 + 2 194 2.86 0.7624 + 3 291 4.29 0.8777 + 4 388 5.73 0.8997 + 5 485 7.16 0.9119 + 6 582 8.59 0.9217 + 7 679 10.02 0.9295 + 8 776 11.45 0.9339 + 9 873 12.88 0.9382 + 10 970 14.31 0.9391 + +44 of 53 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409679245283017 +- 0.0012902791251194902 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2120 + 2 194 2.86 0.7683 + 3 291 4.29 0.8776 + 4 388 5.73 0.8995 + 5 485 7.16 0.9099 + 6 582 8.59 0.9215 + 7 679 10.02 0.9284 + 8 776 11.45 0.9339 + 9 873 12.88 0.9380 + 10 970 14.32 0.9414 + +45 of 54 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409759259259258 +- 0.001279602829756342 + +Files already downloaded and verified +Preprocessing: 1.17 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1534 + 2 194 2.86 0.7741 + 3 291 4.29 0.8761 + 4 388 5.73 0.8978 + 5 485 7.16 0.9095 + 6 582 8.59 0.9205 + 7 679 10.02 0.9260 + 8 776 11.45 0.9334 + 9 873 12.88 0.9379 + 10 970 14.31 0.9407 + +46 of 55 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.940970909090909 +- 0.0012684525615199195 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1579 + 2 194 2.86 0.7788 + 3 291 4.29 0.8765 + 4 388 5.73 0.8975 + 5 485 7.16 0.9115 + 6 582 8.59 0.9200 + 7 679 10.02 0.9275 + 8 776 11.45 0.9358 + 9 873 12.88 0.9399 + 10 970 14.32 0.9412 + +47 of 56 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409749999999999 +- 0.0012574421315852723 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1582 + 2 194 2.86 0.7814 + 3 291 4.29 0.8789 + 4 388 5.73 0.8995 + 5 485 7.16 0.9148 + 6 582 8.59 0.9203 + 7 679 10.02 0.9287 + 8 776 11.45 0.9341 + 9 873 12.88 0.9384 + 10 970 14.31 0.9397 + +47 of 57 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409526315789473 +- 0.0012575533560105088 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1567 + 2 194 2.86 0.7726 + 3 291 4.29 0.8755 + 4 388 5.73 0.9026 + 5 485 7.16 0.9118 + 6 582 8.59 0.9182 + 7 679 10.02 0.9266 + 8 776 11.45 0.9323 + 9 873 12.88 0.9373 + 10 970 14.32 0.9409 + +48 of 58 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409517241379309 +- 0.0012466840679496254 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2288 + 2 194 2.86 0.7648 + 3 291 4.29 0.8718 + 4 388 5.73 0.8973 + 5 485 7.16 0.9102 + 6 582 8.59 0.9193 + 7 679 10.02 0.9270 + 8 776 11.45 0.9327 + 9 873 12.88 0.9372 + 10 970 14.31 0.9416 + +49 of 59 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409627118644067 +- 0.0012389030556846066 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1764 + 2 194 2.86 0.7733 + 3 291 4.29 0.8805 + 4 388 5.72 0.8990 + 5 485 7.16 0.9105 + 6 582 8.59 0.9215 + 7 679 10.02 0.9280 + 8 776 11.45 0.9341 + 9 873 12.88 0.9378 + 10 970 14.32 0.9408 + +50 of 60 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.94096 +- 0.0012287120628256764 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2281 + 2 194 2.86 0.7761 + 3 291 4.29 0.8799 + 4 388 5.73 0.8993 + 5 485 7.16 0.9090 + 6 582 8.59 0.9209 + 7 679 10.02 0.9291 + 8 776 11.45 0.9350 + 9 873 12.88 0.9379 + 10 970 14.31 0.9404 + +51 of 61 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409508196721311 +- 0.0012206720737954772 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1591 + 2 194 2.86 0.7880 + 3 291 4.29 0.8783 + 4 388 5.73 0.8986 + 5 485 7.16 0.9093 + 6 582 8.59 0.9216 + 7 679 10.02 0.9277 + 8 776 11.45 0.9344 + 9 873 12.88 0.9398 + 10 970 14.32 0.9438 + +52 of 62 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409967741935483 +- 0.0012628651170454254 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2074 + 2 194 2.86 0.7707 + 3 291 4.29 0.8757 + 4 388 5.73 0.8971 + 5 485 7.16 0.9089 + 6 582 8.59 0.9189 + 7 679 10.02 0.9280 + 8 776 11.45 0.9325 + 9 873 12.88 0.9373 + 10 970 14.31 0.9411 + +53 of 63 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409984126984127 +- 0.0012528687162493164 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2003 + 2 194 2.86 0.7585 + 3 291 4.29 0.8755 + 4 388 5.73 0.9012 + 5 485 7.16 0.9132 + 6 582 8.59 0.9218 + 7 679 10.02 0.9283 + 8 776 11.45 0.9340 + 9 873 12.88 0.9391 + 10 970 14.32 0.9406 + +54 of 64 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409921875 +- 0.0012440237999506885 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1777 + 2 194 2.86 0.7455 + 3 291 4.29 0.8687 + 4 388 5.73 0.8964 + 5 485 7.16 0.9086 + 6 582 8.59 0.9202 + 7 679 10.02 0.9305 + 8 776 11.45 0.9350 + 9 873 12.88 0.9387 + 10 970 14.31 0.9414 + +55 of 65 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409984615384616 +- 0.0012354373013001455 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1714 + 2 194 2.86 0.7786 + 3 291 4.29 0.8730 + 4 388 5.73 0.9006 + 5 485 7.16 0.9120 + 6 582 8.59 0.9218 + 7 679 10.02 0.9298 + 8 776 11.45 0.9357 + 9 873 12.89 0.9399 + 10 970 14.32 0.9408 + +56 of 66 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409954545454546 +- 0.0012262818671214433 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1950 + 2 194 2.86 0.7619 + 3 291 4.29 0.8790 + 4 388 5.73 0.8987 + 5 485 7.16 0.9116 + 6 582 8.59 0.9226 + 7 679 10.02 0.9288 + 8 776 11.45 0.9352 + 9 873 12.88 0.9395 + 10 970 14.31 0.9415 + +57 of 67 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410029850746269 +- 0.0012186327240785646 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1849 + 2 194 2.86 0.7589 + 3 291 4.29 0.8778 + 4 388 5.73 0.8996 + 5 485 7.16 0.9118 + 6 582 8.59 0.9210 + 7 679 10.02 0.9282 + 8 776 11.45 0.9347 + 9 873 12.89 0.9400 + 10 970 14.32 0.9419 + +58 of 68 runs >= 94.0 % accuracy +Min accuracy: 0.9386 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410161764705882 +- 0.0012144485911815442 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1663 + 2 194 2.86 0.7818 + 3 291 4.29 0.8776 + 4 388 5.73 0.8995 + 5 485 7.16 0.9130 + 6 582 8.59 0.9203 + 7 679 10.02 0.9278 + 8 776 11.45 0.9325 + 9 873 12.88 0.9367 + 10 970 14.31 0.9380 + +58 of 69 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409724637681158 +- 0.0012583499729742719 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1706 + 2 194 2.86 0.7743 + 3 291 4.29 0.8780 + 4 388 5.73 0.8990 + 5 485 7.16 0.9110 + 6 582 8.59 0.9216 + 7 679 10.02 0.9284 + 8 776 11.45 0.9355 + 9 873 12.88 0.9381 + 10 970 14.32 0.9403 + +59 of 70 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.940962857142857 +- 0.0012518753279519065 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1936 + 2 194 2.86 0.7535 + 3 291 4.29 0.8758 + 4 388 5.73 0.8978 + 5 485 7.16 0.9110 + 6 582 8.59 0.9195 + 7 679 10.02 0.9275 + 8 776 11.45 0.9349 + 9 873 12.88 0.9395 + 10 970 14.31 0.9408 + +60 of 71 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409605633802814 +- 0.0012431761767932648 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2558 + 2 194 2.86 0.7785 + 3 291 4.29 0.8749 + 4 388 5.73 0.9016 + 5 485 7.16 0.9118 + 6 582 8.59 0.9228 + 7 679 10.02 0.9280 + 8 776 11.45 0.9330 + 9 873 12.88 0.9382 + 10 970 14.32 0.9420 + +61 of 72 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409749999999997 +- 0.0012404916140161704 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2024 + 2 194 2.86 0.7858 + 3 291 4.29 0.8788 + 4 388 5.73 0.8996 + 5 485 7.16 0.9103 + 6 582 8.59 0.9211 + 7 679 10.02 0.9271 + 8 776 11.45 0.9324 + 9 873 12.88 0.9382 + 10 970 14.31 0.9415 + +62 of 73 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409821917808217 +- 0.0012334762621337761 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1816 + 2 194 2.86 0.7755 + 3 291 4.29 0.8742 + 4 388 5.73 0.8991 + 5 485 7.16 0.9107 + 6 582 8.59 0.9207 + 7 679 10.02 0.9287 + 8 776 11.46 0.9351 + 9 873 12.89 0.9388 + 10 970 14.32 0.9408 + +63 of 74 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409797297297294 +- 0.001225294198509046 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2062 + 2 194 2.86 0.7855 + 3 291 4.29 0.8772 + 4 388 5.73 0.8995 + 5 485 7.16 0.9118 + 6 582 8.59 0.9197 + 7 679 10.02 0.9270 + 8 776 11.45 0.9324 + 9 873 12.88 0.9362 + 10 970 14.32 0.9394 + +63 of 75 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409586666666665 +- 0.00123051136614914 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1848 + 2 194 2.86 0.7730 + 3 291 4.29 0.8757 + 4 388 5.73 0.8957 + 5 485 7.16 0.9118 + 6 582 8.59 0.9203 + 7 679 10.02 0.9267 + 8 776 11.45 0.9350 + 9 873 12.89 0.9383 + 10 970 14.32 0.9409 + +64 of 76 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409578947368419 +- 0.0012224073700666859 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1839 + 2 194 2.86 0.7664 + 3 291 4.30 0.8727 + 4 388 5.73 0.8976 + 5 485 7.16 0.9112 + 6 582 8.59 0.9210 + 7 679 10.02 0.9275 + 8 776 11.45 0.9340 + 9 873 12.88 0.9384 + 10 970 14.32 0.9409 + +65 of 77 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409571428571426 +- 0.0012144614082215085 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2224 + 2 194 2.86 0.7789 + 3 291 4.29 0.8746 + 4 388 5.72 0.9005 + 5 485 7.16 0.9117 + 6 582 8.59 0.9220 + 7 679 10.02 0.9293 + 8 776 11.45 0.9324 + 9 873 12.88 0.9396 + 10 970 14.32 0.9413 + +66 of 78 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409615384615382 +- 0.0012072676045655868 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1626 + 2 194 2.86 0.7808 + 3 291 4.29 0.8801 + 4 388 5.73 0.9013 + 5 485 7.16 0.9120 + 6 582 8.59 0.9210 + 7 679 10.02 0.9273 + 8 776 11.45 0.9309 + 9 873 12.88 0.9373 + 10 970 14.31 0.9395 + +66 of 79 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409430379746833 +- 0.0012106785987387404 + +Files already downloaded and verified +Preprocessing: 4.87 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.46 0.1603 + 2 194 2.89 0.7822 + 3 291 4.33 0.8754 + 4 388 5.76 0.8994 + 5 485 7.19 0.9122 + 6 582 8.62 0.9206 + 7 679 10.06 0.9268 + 8 776 11.49 0.9343 + 9 873 12.92 0.9391 + 10 970 14.35 0.9427 + +67 of 80 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409649999999997 +- 0.0012188211517692017 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1789 + 2 194 2.86 0.7684 + 3 291 4.29 0.8763 + 4 388 5.73 0.9000 + 5 485 7.16 0.9121 + 6 582 8.59 0.9199 + 7 679 10.02 0.9268 + 8 776 11.45 0.9335 + 9 873 12.88 0.9375 + 10 970 14.31 0.9403 + +68 of 81 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409567901234565 +- 0.0012134979814625029 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2120 + 2 194 2.86 0.7553 + 3 291 4.29 0.8746 + 4 388 5.73 0.8971 + 5 485 7.16 0.9116 + 6 582 8.59 0.9206 + 7 679 10.02 0.9287 + 8 776 11.45 0.9344 + 9 873 12.89 0.9387 + 10 970 14.32 0.9404 + +69 of 82 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409499999999996 +- 0.0012076231442534504 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1668 + 2 194 2.86 0.7615 + 3 291 4.29 0.8732 + 4 388 5.73 0.9000 + 5 485 7.16 0.9112 + 6 582 8.59 0.9186 + 7 679 10.02 0.9258 + 8 776 11.45 0.9341 + 9 873 12.88 0.9380 + 10 970 14.31 0.9421 + +70 of 83 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409638554216864 +- 0.0012068657318690286 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1906 + 2 194 2.86 0.7623 + 3 291 4.29 0.8724 + 4 388 5.73 0.8991 + 5 485 7.16 0.9102 + 6 582 8.59 0.9211 + 7 679 10.02 0.9287 + 8 776 11.45 0.9357 + 9 873 12.89 0.9394 + 10 970 14.32 0.9421 + +71 of 84 runs >= 94.0 % accuracy +Min accuracy: 0.9380000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409773809523805 +- 0.0012059723591632458 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1760 + 2 194 2.86 0.7717 + 3 291 4.29 0.8754 + 4 388 5.73 0.9013 + 5 485 7.16 0.9114 + 6 582 8.59 0.9196 + 7 679 10.02 0.9262 + 8 776 11.45 0.9319 + 9 873 12.88 0.9358 + 10 970 14.31 0.9379 + +71 of 85 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409411764705877 +- 0.0012439305936423105 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2114 + 2 194 2.86 0.7834 + 3 291 4.29 0.8785 + 4 388 5.73 0.9012 + 5 485 7.16 0.9110 + 6 582 8.59 0.9215 + 7 679 10.02 0.9285 + 8 776 11.45 0.9354 + 9 873 12.88 0.9391 + 10 970 14.32 0.9417 + +72 of 86 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409499999999995 +- 0.0012393499796639477 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1915 + 2 194 2.86 0.7640 + 3 291 4.29 0.8795 + 4 388 5.73 0.9007 + 5 485 7.16 0.9126 + 6 582 8.59 0.9205 + 7 679 10.02 0.9266 + 8 776 11.45 0.9350 + 9 873 12.88 0.9394 + 10 970 14.31 0.9415 + +73 of 87 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409563218390801 +- 0.0012336005752180202 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1896 + 2 194 2.86 0.7769 + 3 291 4.29 0.8762 + 4 388 5.72 0.8991 + 5 485 7.16 0.9128 + 6 582 8.59 0.9217 + 7 679 10.02 0.9296 + 8 776 11.45 0.9363 + 9 873 12.88 0.9396 + 10 970 14.32 0.9413 + +74 of 88 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409602272727269 +- 0.0012271122580276247 + +Files already downloaded and verified +Preprocessing: 1.19 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1637 + 2 194 2.86 0.7730 + 3 291 4.29 0.8763 + 4 388 5.73 0.8981 + 5 485 7.16 0.9110 + 6 582 8.59 0.9217 + 7 679 10.02 0.9269 + 8 776 11.45 0.9325 + 9 873 12.88 0.9384 + 10 970 14.32 0.9418 + +75 of 89 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409696629213479 +- 0.0012234051295858975 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1619 + 2 194 2.86 0.7752 + 3 291 4.29 0.8743 + 4 388 5.73 0.9001 + 5 485 7.16 0.9114 + 6 582 8.59 0.9221 + 7 679 10.02 0.9284 + 8 776 11.45 0.9351 + 9 873 12.89 0.9388 + 10 970 14.32 0.9417 + +76 of 90 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409777777777774 +- 0.0012189957412903276 + +Files already downloaded and verified +Preprocessing: 1.21 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1508 + 2 194 2.86 0.7641 + 3 291 4.29 0.8788 + 4 388 5.73 0.9009 + 5 485 7.16 0.9135 + 6 582 8.59 0.9217 + 7 679 10.02 0.9273 + 8 776 11.45 0.9355 + 9 873 12.88 0.9369 + 10 970 14.32 0.9399 + +76 of 91 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409659340659335 +- 0.001217475299767027 + +Files already downloaded and verified +Preprocessing: 2.33 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.45 0.1757 + 2 194 2.89 0.7658 + 3 291 4.32 0.8735 + 4 388 5.75 0.8987 + 5 485 7.18 0.9091 + 6 582 8.61 0.9202 + 7 679 10.05 0.9292 + 8 776 11.48 0.9349 + 9 873 12.91 0.9373 + 10 970 14.34 0.9400 + +77 of 92 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409554347826081 +- 0.0012149757673764164 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2004 + 2 194 2.86 0.7658 + 3 291 4.29 0.8757 + 4 388 5.73 0.9004 + 5 485 7.16 0.9131 + 6 582 8.59 0.9219 + 7 679 10.02 0.9304 + 8 776 11.45 0.9354 + 9 873 12.88 0.9385 + 10 970 14.32 0.9410 + +78 of 93 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409559139784941 +- 0.0012084347260915502 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1777 + 2 194 2.86 0.7851 + 3 291 4.29 0.8757 + 4 388 5.73 0.9008 + 5 485 7.16 0.9122 + 6 582 8.59 0.9200 + 7 679 10.02 0.9287 + 8 776 11.45 0.9337 + 9 873 12.88 0.9388 + 10 970 14.32 0.9422 + +79 of 94 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409691489361697 +- 0.001208747073814997 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2026 + 2 194 2.86 0.7886 + 3 291 4.29 0.8795 + 4 388 5.73 0.8995 + 5 485 7.16 0.9102 + 6 582 8.59 0.9238 + 7 679 10.02 0.9288 + 8 776 11.45 0.9331 + 9 873 12.88 0.9374 + 10 970 14.32 0.9423 + +80 of 95 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409831578947364 +- 0.0012100154528442541 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1473 + 2 194 2.86 0.7702 + 3 291 4.29 0.8831 + 4 388 5.73 0.9019 + 5 485 7.16 0.9123 + 6 582 8.59 0.9206 + 7 679 10.02 0.9281 + 8 776 11.45 0.9342 + 9 873 12.88 0.9395 + 10 970 14.32 0.9430 + +81 of 96 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9410041666666662 +- 0.0012209897510717378 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.2115 + 2 194 2.86 0.7763 + 3 291 4.30 0.8766 + 4 388 5.73 0.8973 + 5 485 7.16 0.9102 + 6 582 8.59 0.9186 + 7 679 10.02 0.9270 + 8 776 11.45 0.9322 + 9 873 12.89 0.9379 + 10 970 14.32 0.9404 + +82 of 97 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409979381443294 +- 0.0012162117440985179 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1600 + 2 194 2.86 0.7649 + 3 291 4.29 0.8754 + 4 388 5.72 0.9016 + 5 485 7.16 0.9099 + 6 582 8.59 0.9211 + 7 679 10.02 0.9281 + 8 776 11.45 0.9342 + 9 873 12.88 0.9391 + 10 970 14.32 0.9390 + +82 of 98 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409775510204076 +- 0.0012265374036281819 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1522 + 2 194 2.86 0.7512 + 3 291 4.29 0.8724 + 4 388 5.73 0.8958 + 5 485 7.16 0.9115 + 6 582 8.59 0.9215 + 7 679 10.02 0.9285 + 8 776 11.45 0.9346 + 9 873 12.88 0.9387 + 10 970 14.32 0.9410 + +83 of 99 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409777777777772 +- 0.0012203291123858678 + +Files already downloaded and verified +Preprocessing: 1.18 seconds + +epoch batch train time [sec] validation accuracy + 1 97 1.43 0.1557 + 2 194 2.86 0.7767 + 3 291 4.29 0.8756 + 4 388 5.73 0.8975 + 5 485 7.16 0.9118 + 6 582 8.59 0.9204 + 7 679 10.02 0.9294 + 8 776 11.45 0.9373 + 9 873 12.88 0.9401 + 10 970 14.32 0.9427 + +84 of 100 runs >= 94.0 % accuracy +Min accuracy: 0.9379000000000001 +Max accuracy: 0.9438000000000001 +Mean accuracy: 0.9409949999999995 +- 0.0012262442660416419 + diff --git a/cifar10-fast-simple/logs/P100.txt b/cifar10-fast-simple/logs/P100.txt new file mode 100644 index 0000000..c131a8a --- /dev/null +++ b/cifar10-fast-simple/logs/P100.txt @@ -0,0 +1,2006 @@ +File : train.py 86f88a78d9ab160bcc35ec677f85faf945d1131a3ede2282ebc808596e250907 +Model : model.py 0cf3352991a284cbf63f3f0e44c07fc3bffe61c9d720298ad8c18e57681b88c3 +PyTorch: 1.11.0+cu113 +Device : Tesla P100-PCIE-16GB +Dtype : torch.float16 + +Files already downloaded and verified +Preprocessing: 3.73 seconds + +epoch batch train time [sec] validation accuracy + 1 97 9.96 0.2183 + 2 194 18.35 0.7741 + 3 291 26.74 0.8689 + 4 388 35.12 0.8988 + 5 485 43.51 0.9121 + 6 582 51.89 0.9211 + 7 679 60.27 0.9273 + 8 776 68.65 0.9318 + 9 873 77.04 0.9364 + 10 970 85.42 0.9405 + +1 of 1 runs >= 94.0 % accuracy +Min accuracy: 0.9405 +Max accuracy: 0.9405 +Mean accuracy: 0.9405 +- 0.0 + +Files already downloaded and verified +Preprocessing: 1.35 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.39 0.1883 + 2 194 16.77 0.7746 + 3 291 25.16 0.8727 + 4 388 33.54 0.9000 + 5 485 41.92 0.9098 + 6 582 50.31 0.9203 + 7 679 58.69 0.9279 + 8 776 67.08 0.9348 + 9 873 75.46 0.9393 + 10 970 83.85 0.9428 + +2 of 2 runs >= 94.0 % accuracy +Min accuracy: 0.9405 +Max accuracy: 0.9428000000000001 +Mean accuracy: 0.9416500000000001 +- 0.0011500000000000399 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.39 0.1840 + 2 194 16.77 0.7696 + 3 291 25.16 0.8745 + 4 388 33.54 0.8971 + 5 485 41.93 0.9123 + 6 582 50.31 0.9200 + 7 679 58.69 0.9282 + 8 776 67.08 0.9342 + 9 873 75.46 0.9389 + 10 970 83.85 0.9414 + +3 of 3 runs >= 94.0 % accuracy +Min accuracy: 0.9405 +Max accuracy: 0.9428000000000001 +Mean accuracy: 0.9415666666666667 +- 0.0009463379711052599 + +Files already downloaded and verified +Preprocessing: 1.33 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1896 + 2 194 16.77 0.7562 + 3 291 25.15 0.8768 + 4 388 33.54 0.8971 + 5 485 41.92 0.9150 + 6 582 50.31 0.9197 + 7 679 58.69 0.9254 + 8 776 67.07 0.9341 + 9 873 75.46 0.9378 + 10 970 83.84 0.9418 + +4 of 4 runs >= 94.0 % accuracy +Min accuracy: 0.9405 +Max accuracy: 0.9428000000000001 +Mean accuracy: 0.941625 +- 0.000825757228245719 + +Files already downloaded and verified +Preprocessing: 1.37 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1951 + 2 194 16.77 0.7719 + 3 291 25.15 0.8795 + 4 388 33.54 0.8969 + 5 485 41.92 0.9098 + 6 582 50.30 0.9217 + 7 679 58.69 0.9295 + 8 776 67.07 0.9363 + 9 873 75.46 0.9388 + 10 970 83.84 0.9412 + +5 of 5 runs >= 94.0 % accuracy +Min accuracy: 0.9405 +Max accuracy: 0.9428000000000001 +Mean accuracy: 0.94154 +- 0.0007578918128598851 + +Files already downloaded and verified +Preprocessing: 1.34 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.39 0.2589 + 2 194 16.77 0.7830 + 3 291 25.15 0.8764 + 4 388 33.54 0.9010 + 5 485 41.92 0.9105 + 6 582 50.30 0.9174 + 7 679 58.69 0.9261 + 8 776 67.07 0.9320 + 9 873 75.45 0.9367 + 10 970 83.84 0.9390 + +5 of 6 runs >= 94.0 % accuracy +Min accuracy: 0.9390000000000001 +Max accuracy: 0.9428000000000001 +Mean accuracy: 0.9411166666666667 +- 0.001172485489130782 + +Files already downloaded and verified +Preprocessing: 1.35 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1756 + 2 194 16.77 0.7820 + 3 291 25.15 0.8783 + 4 388 33.54 0.8994 + 5 485 41.92 0.9105 + 6 582 50.30 0.9194 + 7 679 58.68 0.9277 + 8 776 67.07 0.9334 + 9 873 75.45 0.9382 + 10 970 83.84 0.9414 + +6 of 7 runs >= 94.0 % accuracy +Min accuracy: 0.9390000000000001 +Max accuracy: 0.9428000000000001 +Mean accuracy: 0.9411571428571428 +- 0.0010900290203963118 + +Files already downloaded and verified +Preprocessing: 1.35 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1676 + 2 194 16.77 0.7640 + 3 291 25.15 0.8803 + 4 388 33.53 0.9012 + 5 485 41.92 0.9124 + 6 582 50.30 0.9221 + 7 679 58.68 0.9266 + 8 776 67.07 0.9328 + 9 873 75.45 0.9375 + 10 970 83.83 0.9399 + +6 of 8 runs >= 94.0 % accuracy +Min accuracy: 0.9390000000000001 +Max accuracy: 0.9428000000000001 +Mean accuracy: 0.941 +- 0.0011011357772772667 + +Files already downloaded and verified +Preprocessing: 1.36 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2273 + 2 194 16.77 0.7778 + 3 291 25.15 0.8723 + 4 388 33.54 0.8976 + 5 485 41.92 0.9100 + 6 582 50.30 0.9207 + 7 679 58.68 0.9291 + 8 776 67.07 0.9328 + 9 873 75.45 0.9383 + 10 970 83.83 0.9421 + +7 of 9 runs >= 94.0 % accuracy +Min accuracy: 0.9390000000000001 +Max accuracy: 0.9428000000000001 +Mean accuracy: 0.9411222222222223 +- 0.001094204711476465 + +Files already downloaded and verified +Preprocessing: 1.33 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2068 + 2 194 16.77 0.7633 + 3 291 25.15 0.8706 + 4 388 33.54 0.8972 + 5 485 41.92 0.9108 + 6 582 50.30 0.9190 + 7 679 58.68 0.9271 + 8 776 67.07 0.9327 + 9 873 75.45 0.9389 + 10 970 83.84 0.9431 + +8 of 10 runs >= 94.0 % accuracy +Min accuracy: 0.9390000000000001 +Max accuracy: 0.9431 +Mean accuracy: 0.9413199999999999 +- 0.0011956588142108143 + +Files already downloaded and verified +Preprocessing: 1.34 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.39 0.1576 + 2 194 16.77 0.7786 + 3 291 25.15 0.8768 + 4 388 33.54 0.9014 + 5 485 41.92 0.9126 + 6 582 50.30 0.9199 + 7 679 58.69 0.9259 + 8 776 67.07 0.9328 + 9 873 75.46 0.9383 + 10 970 83.84 0.9415 + +9 of 11 runs >= 94.0 % accuracy +Min accuracy: 0.9390000000000001 +Max accuracy: 0.9431 +Mean accuracy: 0.9413363636363635 +- 0.0011411897517883628 + +Files already downloaded and verified +Preprocessing: 1.37 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1953 + 2 194 16.77 0.7587 + 3 291 25.15 0.8765 + 4 388 33.53 0.8995 + 5 485 41.92 0.9116 + 6 582 50.30 0.9224 + 7 679 58.68 0.9285 + 8 776 67.07 0.9360 + 9 873 75.45 0.9393 + 10 970 83.83 0.9423 + +10 of 12 runs >= 94.0 % accuracy +Min accuracy: 0.9390000000000001 +Max accuracy: 0.9431 +Mean accuracy: 0.9414166666666666 +- 0.001124598693855825 + +Files already downloaded and verified +Preprocessing: 1.34 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2340 + 2 194 16.77 0.7671 + 3 291 25.15 0.8800 + 4 388 33.53 0.9000 + 5 485 41.92 0.9147 + 6 582 50.30 0.9215 + 7 679 58.68 0.9283 + 8 776 67.07 0.9351 + 9 873 75.45 0.9377 + 10 970 83.83 0.9394 + +10 of 13 runs >= 94.0 % accuracy +Min accuracy: 0.9390000000000001 +Max accuracy: 0.9431 +Mean accuracy: 0.9412615384615385 +- 0.0012067365154628795 + +Files already downloaded and verified +Preprocessing: 1.34 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1725 + 2 194 16.77 0.7548 + 3 291 25.15 0.8766 + 4 388 33.54 0.8988 + 5 485 41.92 0.9115 + 6 582 50.30 0.9207 + 7 679 58.69 0.9280 + 8 776 67.07 0.9321 + 9 873 75.45 0.9359 + 10 970 83.84 0.9384 + +10 of 14 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9431 +Mean accuracy: 0.9410571428571428 +- 0.001376701173984028 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1930 + 2 194 16.77 0.7692 + 3 291 25.15 0.8733 + 4 388 33.53 0.8985 + 5 485 41.92 0.9106 + 6 582 50.30 0.9204 + 7 679 58.68 0.9281 + 8 776 67.07 0.9334 + 9 873 75.45 0.9397 + 10 970 83.83 0.9415 + +11 of 15 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9431 +Mean accuracy: 0.9410866666666666 +- 0.001334599398904246 + +Files already downloaded and verified +Preprocessing: 1.35 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1923 + 2 194 16.77 0.7746 + 3 291 25.15 0.8775 + 4 388 33.53 0.8989 + 5 485 41.91 0.9139 + 6 582 50.30 0.9206 + 7 679 58.68 0.9284 + 8 776 67.06 0.9357 + 9 873 75.45 0.9407 + 10 970 83.83 0.9434 + +12 of 16 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.94123125 +- 0.0014083317924054731 + +Files already downloaded and verified +Preprocessing: 1.33 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1765 + 2 194 16.77 0.7611 + 3 291 25.15 0.8765 + 4 388 33.53 0.9004 + 5 485 41.92 0.9116 + 6 582 50.30 0.9210 + 7 679 58.68 0.9281 + 8 776 67.06 0.9363 + 9 873 75.45 0.9402 + 10 970 83.83 0.9421 + +13 of 17 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412823529411765 +- 0.0013814890917870676 + +Files already downloaded and verified +Preprocessing: 1.33 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2296 + 2 194 16.77 0.7657 + 3 291 25.15 0.8742 + 4 388 33.53 0.8968 + 5 485 41.91 0.9109 + 6 582 50.30 0.9209 + 7 679 58.68 0.9290 + 8 776 67.06 0.9347 + 9 873 75.45 0.9396 + 10 970 83.83 0.9422 + +14 of 18 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9413333333333332 +- 0.0013589211407093054 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1566 + 2 194 16.77 0.7418 + 3 291 25.15 0.8733 + 4 388 33.53 0.8958 + 5 485 41.91 0.9107 + 6 582 50.30 0.9218 + 7 679 58.68 0.9291 + 8 776 67.06 0.9347 + 9 873 75.44 0.9391 + 10 970 83.83 0.9427 + +15 of 19 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9414052631578946 +- 0.0013574254595064747 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1636 + 2 194 16.77 0.7496 + 3 291 25.15 0.8732 + 4 388 33.53 0.9000 + 5 485 41.92 0.9122 + 6 582 50.30 0.9200 + 7 679 58.68 0.9292 + 8 776 67.06 0.9356 + 9 873 75.45 0.9387 + 10 970 83.83 0.9414 + +16 of 20 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9414049999999999 +- 0.0013230551764760303 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2156 + 2 194 16.77 0.7821 + 3 291 25.15 0.8759 + 4 388 33.53 0.9004 + 5 485 41.92 0.9127 + 6 582 50.30 0.9224 + 7 679 58.68 0.9300 + 8 776 67.06 0.9357 + 9 873 75.45 0.9384 + 10 970 83.83 0.9414 + +17 of 21 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.941404761904762 +- 0.0012911700822919939 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2418 + 2 194 16.77 0.7750 + 3 291 25.15 0.8798 + 4 388 33.53 0.8963 + 5 485 41.91 0.9123 + 6 582 50.30 0.9205 + 7 679 58.68 0.9271 + 8 776 67.06 0.9340 + 9 873 75.44 0.9384 + 10 970 83.83 0.9413 + +18 of 22 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9413999999999999 +- 0.001261672771291431 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1365 + 2 194 16.77 0.7367 + 3 291 25.15 0.8721 + 4 388 33.53 0.8988 + 5 485 41.92 0.9093 + 6 582 50.30 0.9197 + 7 679 58.68 0.9288 + 8 776 67.07 0.9345 + 9 873 75.45 0.9382 + 10 970 83.83 0.9412 + +19 of 23 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.941391304347826 +- 0.0012346141954960033 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1828 + 2 194 16.77 0.7584 + 3 291 25.15 0.8750 + 4 388 33.53 0.9013 + 5 485 41.91 0.9130 + 6 582 50.30 0.9209 + 7 679 58.68 0.9261 + 8 776 67.06 0.9321 + 9 873 75.44 0.9379 + 10 970 83.83 0.9391 + +19 of 24 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412958333333332 +- 0.0012924392850558086 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1716 + 2 194 16.77 0.7875 + 3 291 25.15 0.8739 + 4 388 33.53 0.9006 + 5 485 41.91 0.9120 + 6 582 50.29 0.9227 + 7 679 58.67 0.9296 + 8 776 67.05 0.9349 + 9 873 75.43 0.9381 + 10 970 83.82 0.9405 + +20 of 25 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412639999999999 +- 0.0012758934124761424 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1719 + 2 194 16.77 0.7652 + 3 291 25.15 0.8793 + 4 388 33.53 0.9002 + 5 485 41.91 0.9111 + 6 582 50.29 0.9204 + 7 679 58.67 0.9279 + 8 776 67.06 0.9337 + 9 873 75.44 0.9392 + 10 970 83.82 0.9402 + +21 of 26 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412230769230768 +- 0.0012677380499589118 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2125 + 2 194 16.77 0.7705 + 3 291 25.15 0.8770 + 4 388 33.53 0.8998 + 5 485 41.91 0.9107 + 6 582 50.29 0.9200 + 7 679 58.67 0.9286 + 8 776 67.05 0.9344 + 9 873 75.44 0.9378 + 10 970 83.82 0.9405 + +22 of 27 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9411962962962962 +- 0.0012515121169510055 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1776 + 2 194 16.76 0.7447 + 3 291 25.15 0.8718 + 4 388 33.53 0.9007 + 5 485 41.91 0.9143 + 6 582 50.29 0.9199 + 7 679 58.67 0.9270 + 8 776 67.05 0.9338 + 9 873 75.44 0.9374 + 10 970 83.82 0.9419 + +23 of 28 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412214285714285 +- 0.0012358794274457724 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.41 0.1977 + 2 194 16.79 0.7662 + 3 291 25.17 0.8749 + 4 388 33.55 0.8978 + 5 485 41.93 0.9119 + 6 582 50.31 0.9204 + 7 679 58.70 0.9276 + 8 776 67.08 0.9352 + 9 873 75.46 0.9395 + 10 970 83.84 0.9411 + +24 of 29 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412172413793103 +- 0.0012145863395489032 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1735 + 2 194 16.77 0.7464 + 3 291 25.15 0.8715 + 4 388 33.53 0.9001 + 5 485 41.91 0.9103 + 6 582 50.29 0.9219 + 7 679 58.67 0.9297 + 8 776 67.05 0.9361 + 9 873 75.43 0.9395 + 10 970 83.82 0.9417 + +25 of 30 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412333333333333 +- 0.0011973118038153528 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1698 + 2 194 16.76 0.7590 + 3 291 25.15 0.8752 + 4 388 33.53 0.8999 + 5 485 41.91 0.9103 + 6 582 50.29 0.9205 + 7 679 58.67 0.9274 + 8 776 67.05 0.9346 + 9 873 75.43 0.9393 + 10 970 83.82 0.9412 + +26 of 31 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.941232258064516 +- 0.0011778567459788494 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2070 + 2 194 16.77 0.7572 + 3 291 25.15 0.8736 + 4 388 33.53 0.9013 + 5 485 41.91 0.9129 + 6 582 50.29 0.9218 + 7 679 58.67 0.9284 + 8 776 67.05 0.9349 + 9 873 75.44 0.9384 + 10 970 83.82 0.9410 + +27 of 32 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412249999999999 +- 0.001160010775812025 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2345 + 2 194 16.77 0.7870 + 3 291 25.15 0.8761 + 4 388 33.53 0.8994 + 5 485 41.91 0.9085 + 6 582 50.30 0.9184 + 7 679 58.68 0.9289 + 8 776 67.06 0.9320 + 9 873 75.44 0.9382 + 10 970 83.83 0.9410 + +28 of 33 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412181818181816 +- 0.0011429506061743373 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1765 + 2 194 16.77 0.7703 + 3 291 25.15 0.8779 + 4 388 33.53 0.8997 + 5 485 41.91 0.9122 + 6 582 50.30 0.9198 + 7 679 58.68 0.9267 + 8 776 67.06 0.9325 + 9 873 75.45 0.9367 + 10 970 83.83 0.9393 + +28 of 34 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9411617647058822 +- 0.0011717294171393138 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1325 + 2 194 16.77 0.7603 + 3 291 25.15 0.8734 + 4 388 33.53 0.8991 + 5 485 41.91 0.9128 + 6 582 50.30 0.9198 + 7 679 58.68 0.9281 + 8 776 67.06 0.9325 + 9 873 75.44 0.9382 + 10 970 83.83 0.9411 + +29 of 35 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9411599999999999 +- 0.0011549149628559616 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1759 + 2 194 16.77 0.7756 + 3 291 25.15 0.8741 + 4 388 33.53 0.8987 + 5 485 41.91 0.9117 + 6 582 50.30 0.9202 + 7 679 58.68 0.9284 + 8 776 67.06 0.9336 + 9 873 75.45 0.9397 + 10 970 83.83 0.9432 + +30 of 36 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412166666666665 +- 0.0011870832602082645 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1695 + 2 194 16.77 0.7587 + 3 291 25.15 0.8744 + 4 388 33.53 0.8971 + 5 485 41.91 0.9111 + 6 582 50.29 0.9196 + 7 679 58.68 0.9278 + 8 776 67.06 0.9343 + 9 873 75.44 0.9392 + 10 970 83.83 0.9417 + +31 of 37 runs >= 94.0 % accuracy +Min accuracy: 0.9384 +Max accuracy: 0.9434 +Mean accuracy: 0.9412297297297295 +- 0.0011735519806460731 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1254 + 2 194 16.77 0.7464 + 3 291 25.15 0.8760 + 4 388 33.53 0.8988 + 5 485 41.91 0.9139 + 6 582 50.30 0.9204 + 7 679 58.68 0.9270 + 8 776 67.06 0.9327 + 9 873 75.44 0.9358 + 10 970 83.83 0.9366 + +31 of 38 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9411078947368419 +- 0.0013748457480841016 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1924 + 2 194 16.77 0.7740 + 3 291 25.15 0.8756 + 4 388 33.53 0.8989 + 5 485 41.92 0.9107 + 6 582 50.30 0.9201 + 7 679 58.68 0.9288 + 8 776 67.06 0.9338 + 9 873 75.45 0.9387 + 10 970 83.83 0.9420 + +32 of 39 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.941130769230769 +- 0.0013644109927005042 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2172 + 2 194 16.77 0.7571 + 3 291 25.15 0.8762 + 4 388 33.53 0.8985 + 5 485 41.92 0.9115 + 6 582 50.30 0.9201 + 7 679 58.68 0.9283 + 8 776 67.06 0.9348 + 9 873 75.44 0.9379 + 10 970 83.83 0.9404 + +33 of 40 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9411124999999997 +- 0.0013520701719955232 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1521 + 2 194 16.77 0.7526 + 3 291 25.15 0.8716 + 4 388 33.53 0.8968 + 5 485 41.91 0.9122 + 6 582 50.30 0.9215 + 7 679 58.68 0.9288 + 8 776 67.06 0.9325 + 9 873 75.44 0.9363 + 10 970 83.83 0.9385 + +33 of 41 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9410487804878045 +- 0.0013949599087200878 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1304 + 2 194 16.77 0.7688 + 3 291 25.15 0.8754 + 4 388 33.53 0.8967 + 5 485 41.91 0.9119 + 6 582 50.29 0.9200 + 7 679 58.68 0.9259 + 8 776 67.06 0.9322 + 9 873 75.44 0.9380 + 10 970 83.82 0.9414 + +34 of 42 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9410571428571425 +- 0.0013792929274058666 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1666 + 2 194 16.77 0.7524 + 3 291 25.15 0.8704 + 4 388 33.53 0.8974 + 5 485 41.91 0.9109 + 6 582 50.30 0.9216 + 7 679 58.68 0.9293 + 8 776 67.06 0.9339 + 9 873 75.44 0.9377 + 10 970 83.83 0.9401 + +35 of 43 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9410348837209299 +- 0.001370771930028334 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1364 + 2 194 16.77 0.7617 + 3 291 25.15 0.8733 + 4 388 33.53 0.8999 + 5 485 41.91 0.9102 + 6 582 50.30 0.9209 + 7 679 58.68 0.9266 + 8 776 67.06 0.9318 + 9 873 75.44 0.9358 + 10 970 83.83 0.9383 + +35 of 44 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.940972727272727 +- 0.0014150752688563725 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1609 + 2 194 16.77 0.7789 + 3 291 25.15 0.8798 + 4 388 33.53 0.8992 + 5 485 41.91 0.9109 + 6 582 50.29 0.9206 + 7 679 58.67 0.9276 + 8 776 67.06 0.9332 + 9 873 75.44 0.9374 + 10 970 83.82 0.9400 + +36 of 45 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409511111111107 +- 0.001406591186319645 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1521 + 2 194 16.77 0.7581 + 3 291 25.15 0.8720 + 4 388 33.53 0.8964 + 5 485 41.91 0.9126 + 6 582 50.29 0.9198 + 7 679 58.67 0.9292 + 8 776 67.06 0.9351 + 9 873 75.44 0.9380 + 10 970 83.82 0.9406 + +37 of 46 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409434782608692 +- 0.0013921600629352097 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1743 + 2 194 16.77 0.7826 + 3 291 25.15 0.8786 + 4 388 33.53 0.9006 + 5 485 41.91 0.9125 + 6 582 50.29 0.9208 + 7 679 58.67 0.9284 + 8 776 67.06 0.9344 + 9 873 75.44 0.9386 + 10 970 83.82 0.9402 + +38 of 47 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409276595744678 +- 0.0013814426821661717 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1795 + 2 194 16.77 0.7730 + 3 291 25.15 0.8805 + 4 388 33.53 0.9000 + 5 485 41.91 0.9122 + 6 582 50.29 0.9224 + 7 679 58.67 0.9272 + 8 776 67.06 0.9333 + 9 873 75.44 0.9360 + 10 970 83.82 0.9380 + +38 of 48 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408666666666664 +- 0.0014295006898292243 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1302 + 2 194 16.77 0.7725 + 3 291 25.15 0.8744 + 4 388 33.53 0.9009 + 5 485 41.91 0.9104 + 6 582 50.30 0.9218 + 7 679 58.68 0.9285 + 8 776 67.06 0.9344 + 9 873 75.44 0.9383 + 10 970 83.83 0.9403 + +39 of 49 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.940855102040816 +- 0.0014171055905943639 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2323 + 2 194 16.77 0.7674 + 3 291 25.15 0.8729 + 4 388 33.53 0.8974 + 5 485 41.91 0.9120 + 6 582 50.29 0.9206 + 7 679 58.67 0.9291 + 8 776 67.06 0.9330 + 9 873 75.44 0.9385 + 10 970 83.82 0.9413 + +40 of 50 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408639999999997 +- 0.001404244992869836 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2032 + 2 194 16.77 0.7778 + 3 291 25.15 0.8746 + 4 388 33.53 0.9015 + 5 485 41.91 0.9117 + 6 582 50.29 0.9218 + 7 679 58.67 0.9295 + 8 776 67.06 0.9343 + 9 873 75.44 0.9384 + 10 970 83.82 0.9411 + +41 of 51 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408686274509801 +- 0.00139079469398437 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2075 + 2 194 16.77 0.7787 + 3 291 25.15 0.8763 + 4 388 33.53 0.8991 + 5 485 41.91 0.9118 + 6 582 50.29 0.9220 + 7 679 58.67 0.9287 + 8 776 67.06 0.9336 + 9 873 75.44 0.9393 + 10 970 83.82 0.9416 + +42 of 52 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408826923076921 +- 0.0013810142808048684 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1834 + 2 194 16.77 0.7662 + 3 291 25.15 0.8784 + 4 388 33.53 0.8978 + 5 485 41.91 0.9120 + 6 582 50.29 0.9216 + 7 679 58.67 0.9273 + 8 776 67.06 0.9351 + 9 873 75.44 0.9386 + 10 970 83.82 0.9418 + +43 of 53 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408999999999997 +- 0.0013736056394868924 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1876 + 2 194 16.77 0.7738 + 3 291 25.15 0.8746 + 4 388 33.53 0.9011 + 5 485 41.91 0.9116 + 6 582 50.29 0.9196 + 7 679 58.67 0.9277 + 8 776 67.06 0.9349 + 9 873 75.44 0.9384 + 10 970 83.82 0.9415 + +44 of 54 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409111111111108 +- 0.0013632296437975523 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1535 + 2 194 16.77 0.7717 + 3 291 25.15 0.8765 + 4 388 33.53 0.9010 + 5 485 41.91 0.9125 + 6 582 50.30 0.9234 + 7 679 58.68 0.9277 + 8 776 67.06 0.9347 + 9 873 75.44 0.9389 + 10 970 83.82 0.9417 + +45 of 55 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409254545454542 +- 0.0013548858632664769 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1505 + 2 194 16.77 0.7702 + 3 291 25.15 0.8777 + 4 388 33.53 0.8981 + 5 485 41.91 0.9105 + 6 582 50.30 0.9200 + 7 679 58.68 0.9284 + 8 776 67.06 0.9354 + 9 873 75.44 0.9385 + 10 970 83.82 0.9403 + +46 of 56 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409142857142854 +- 0.0013452865562278372 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1656 + 2 194 16.77 0.7657 + 3 291 25.15 0.8764 + 4 388 33.53 0.9018 + 5 485 41.91 0.9114 + 6 582 50.29 0.9185 + 7 679 58.68 0.9267 + 8 776 67.06 0.9340 + 9 873 75.44 0.9377 + 10 970 83.82 0.9411 + +47 of 57 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409175438596488 +- 0.0013336564705386735 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1637 + 2 194 16.77 0.7757 + 3 291 25.15 0.8769 + 4 388 33.53 0.9035 + 5 485 41.91 0.9120 + 6 582 50.30 0.9191 + 7 679 58.68 0.9278 + 8 776 67.06 0.9334 + 9 873 75.44 0.9367 + 10 970 83.83 0.9422 + +48 of 58 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409396551724134 +- 0.001332606941451337 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2329 + 2 194 16.77 0.7731 + 3 291 25.15 0.8785 + 4 388 33.53 0.8970 + 5 485 41.91 0.9107 + 6 582 50.30 0.9187 + 7 679 58.68 0.9280 + 8 776 67.06 0.9348 + 9 873 75.44 0.9403 + 10 970 83.83 0.9429 + +49 of 59 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409728813559318 +- 0.0013452780581427036 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2039 + 2 194 16.77 0.7801 + 3 291 25.15 0.8770 + 4 388 33.53 0.8986 + 5 485 41.91 0.9103 + 6 582 50.29 0.9190 + 7 679 58.68 0.9253 + 8 776 67.06 0.9344 + 9 873 75.44 0.9371 + 10 970 83.82 0.9402 + +50 of 60 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409599999999997 +- 0.0013376845667047253 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2142 + 2 194 16.77 0.7742 + 3 291 25.15 0.8754 + 4 388 33.53 0.8977 + 5 485 41.91 0.9109 + 6 582 50.30 0.9202 + 7 679 58.68 0.9287 + 8 776 67.06 0.9338 + 9 873 75.44 0.9381 + 10 970 83.82 0.9401 + +51 of 61 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409459016393439 +- 0.0013311616731867151 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1682 + 2 194 16.77 0.7908 + 3 291 25.15 0.8779 + 4 388 33.53 0.8970 + 5 485 41.91 0.9098 + 6 582 50.30 0.9193 + 7 679 58.68 0.9262 + 8 776 67.06 0.9332 + 9 873 75.44 0.9382 + 10 970 83.83 0.9405 + +52 of 62 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.940938709677419 +- 0.0013215771173121645 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2225 + 2 194 16.77 0.7677 + 3 291 25.15 0.8717 + 4 388 33.53 0.8947 + 5 485 41.91 0.9096 + 6 582 50.29 0.9196 + 7 679 58.68 0.9278 + 8 776 67.06 0.9315 + 9 873 75.44 0.9352 + 10 970 83.82 0.9388 + +52 of 63 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409047619047616 +- 0.0013380189776608198 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1942 + 2 194 16.77 0.7633 + 3 291 25.15 0.8802 + 4 388 33.53 0.9019 + 5 485 41.91 0.9142 + 6 582 50.29 0.9212 + 7 679 58.68 0.9282 + 8 776 67.06 0.9341 + 9 873 75.44 0.9392 + 10 970 83.82 0.9405 + +53 of 64 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408984374999997 +- 0.0013284732999175243 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1798 + 2 194 16.77 0.7404 + 3 291 25.15 0.8756 + 4 388 33.53 0.8997 + 5 485 41.91 0.9122 + 6 582 50.29 0.9220 + 7 679 58.68 0.9274 + 8 776 67.06 0.9345 + 9 873 75.44 0.9383 + 10 970 83.83 0.9398 + +53 of 65 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408815384615381 +- 0.001325128998967772 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1694 + 2 194 16.77 0.7854 + 3 291 25.15 0.8782 + 4 388 33.53 0.8982 + 5 485 41.91 0.9113 + 6 582 50.29 0.9212 + 7 679 58.67 0.9261 + 8 776 67.06 0.9350 + 9 873 75.44 0.9390 + 10 970 83.82 0.9389 + +53 of 66 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408515151515148 +- 0.0013371433168402089 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1861 + 2 194 16.77 0.7683 + 3 291 25.15 0.8805 + 4 388 33.53 0.9002 + 5 485 41.91 0.9124 + 6 582 50.29 0.9206 + 7 679 58.68 0.9284 + 8 776 67.06 0.9336 + 9 873 75.44 0.9393 + 10 970 83.82 0.9418 + +54 of 67 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408656716417907 +- 0.0013321010493253605 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1867 + 2 194 16.77 0.7632 + 3 291 25.15 0.8763 + 4 388 33.53 0.8988 + 5 485 41.91 0.9131 + 6 582 50.29 0.9209 + 7 679 58.67 0.9279 + 8 776 67.06 0.9331 + 9 873 75.44 0.9381 + 10 970 83.82 0.9404 + +55 of 68 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408588235294113 +- 0.0013234575143870496 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1635 + 2 194 16.77 0.7892 + 3 291 25.15 0.8791 + 4 388 33.53 0.8993 + 5 485 41.91 0.9117 + 6 582 50.29 0.9209 + 7 679 58.68 0.9276 + 8 776 67.06 0.9363 + 9 873 75.44 0.9387 + 10 970 83.82 0.9427 + +56 of 69 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408855072463763 +- 0.0013321308377138024 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1834 + 2 194 16.77 0.7837 + 3 291 25.15 0.8775 + 4 388 33.53 0.8984 + 5 485 41.91 0.9134 + 6 582 50.29 0.9219 + 7 679 58.67 0.9288 + 8 776 67.06 0.9330 + 9 873 75.44 0.9364 + 10 970 83.82 0.9389 + +56 of 70 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408571428571424 +- 0.0013434041439111153 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1898 + 2 194 16.77 0.7501 + 3 291 25.15 0.8768 + 4 388 33.53 0.9008 + 5 485 41.91 0.9119 + 6 582 50.29 0.9205 + 7 679 58.68 0.9258 + 8 776 67.06 0.9325 + 9 873 75.44 0.9382 + 10 970 83.82 0.9402 + +57 of 71 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408478873239433 +- 0.0013361558434585158 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2717 + 2 194 16.77 0.7899 + 3 291 25.15 0.8754 + 4 388 33.53 0.8981 + 5 485 41.91 0.9138 + 6 582 50.30 0.9220 + 7 679 58.68 0.9278 + 8 776 67.06 0.9339 + 9 873 75.44 0.9384 + 10 970 83.82 0.9414 + +58 of 72 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408555555555552 +- 0.0013284168615403436 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2068 + 2 194 16.77 0.7802 + 3 291 25.15 0.8781 + 4 388 33.53 0.8996 + 5 485 41.91 0.9140 + 6 582 50.30 0.9216 + 7 679 58.68 0.9280 + 8 776 67.06 0.9335 + 9 873 75.44 0.9387 + 10 970 83.83 0.9428 + +59 of 73 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408821917808217 +- 0.0013385068828918626 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1775 + 2 194 16.77 0.7809 + 3 291 25.15 0.8761 + 4 388 33.53 0.8968 + 5 485 41.91 0.9111 + 6 582 50.29 0.9209 + 7 679 58.67 0.9280 + 8 776 67.06 0.9331 + 9 873 75.44 0.9385 + 10 970 83.82 0.9424 + +60 of 74 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9409027027027026 +- 0.0013409328109589289 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1966 + 2 194 16.77 0.7746 + 3 291 25.15 0.8780 + 4 388 33.53 0.8998 + 5 485 41.91 0.9114 + 6 582 50.30 0.9220 + 7 679 58.68 0.9281 + 8 776 67.06 0.9344 + 9 873 75.44 0.9375 + 10 970 83.83 0.9400 + +61 of 75 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408906666666664 +- 0.0013359813704622633 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1727 + 2 194 16.77 0.7745 + 3 291 25.15 0.8747 + 4 388 33.53 0.9003 + 5 485 41.91 0.9128 + 6 582 50.29 0.9226 + 7 679 58.67 0.9278 + 8 776 67.06 0.9336 + 9 873 75.44 0.9369 + 10 970 83.82 0.9407 + +62 of 76 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9434 +Mean accuracy: 0.9408881578947368 +- 0.0013273407432733571 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1865 + 2 194 16.77 0.7655 + 3 291 25.15 0.8717 + 4 388 33.53 0.8978 + 5 485 41.91 0.9140 + 6 582 50.30 0.9232 + 7 679 58.68 0.9304 + 8 776 67.06 0.9364 + 9 873 75.44 0.9405 + 10 970 83.82 0.9435 + +63 of 77 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9435 +Mean accuracy: 0.9409220779220778 +- 0.001351442075059024 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2233 + 2 194 16.77 0.7653 + 3 291 25.15 0.8776 + 4 388 33.53 0.9003 + 5 485 41.91 0.9148 + 6 582 50.30 0.9229 + 7 679 58.68 0.9290 + 8 776 67.06 0.9338 + 9 873 75.44 0.9377 + 10 970 83.82 0.9398 + +63 of 78 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9435 +Mean accuracy: 0.9409076923076923 +- 0.0013486716380856857 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1690 + 2 194 16.77 0.7789 + 3 291 25.15 0.8756 + 4 388 33.53 0.8999 + 5 485 41.91 0.9114 + 6 582 50.30 0.9200 + 7 679 58.68 0.9282 + 8 776 67.06 0.9351 + 9 873 75.44 0.9386 + 10 970 83.82 0.9411 + +64 of 79 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9435 +Mean accuracy: 0.9409101265822786 +- 0.0013402809961101032 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1467 + 2 194 16.77 0.7810 + 3 291 25.15 0.8784 + 4 388 33.53 0.8990 + 5 485 41.91 0.9114 + 6 582 50.30 0.9204 + 7 679 58.68 0.9272 + 8 776 67.06 0.9346 + 9 873 75.44 0.9383 + 10 970 83.83 0.9406 + +65 of 80 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9435 +Mean accuracy: 0.94090625 +- 0.0013323235108261063 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1904 + 2 194 16.77 0.7659 + 3 291 25.15 0.8766 + 4 388 33.53 0.9017 + 5 485 41.91 0.9155 + 6 582 50.29 0.9233 + 7 679 58.68 0.9298 + 8 776 67.06 0.9355 + 9 873 75.44 0.9393 + 10 970 83.83 0.9418 + +66 of 81 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9435 +Mean accuracy: 0.9409172839506174 +- 0.0013277466405885844 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2094 + 2 194 16.77 0.7563 + 3 291 25.15 0.8759 + 4 388 33.53 0.8991 + 5 485 41.91 0.9136 + 6 582 50.29 0.9182 + 7 679 58.67 0.9278 + 8 776 67.06 0.9332 + 9 873 75.44 0.9372 + 10 970 83.82 0.9405 + +67 of 82 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9435 +Mean accuracy: 0.9409121951219513 +- 0.0013204203177723237 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1654 + 2 194 16.77 0.7718 + 3 291 25.15 0.8765 + 4 388 33.53 0.8998 + 5 485 41.91 0.9105 + 6 582 50.29 0.9196 + 7 679 58.68 0.9261 + 8 776 67.06 0.9321 + 9 873 75.44 0.9361 + 10 970 83.83 0.9378 + +67 of 83 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9435 +Mean accuracy: 0.9408746987951808 +- 0.0013556524569278267 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1831 + 2 194 16.77 0.7600 + 3 291 25.15 0.8758 + 4 388 33.53 0.9003 + 5 485 41.91 0.9126 + 6 582 50.30 0.9209 + 7 679 58.68 0.9286 + 8 776 67.06 0.9345 + 9 873 75.44 0.9400 + 10 970 83.83 0.9416 + +68 of 84 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9435 +Mean accuracy: 0.9408833333333333 +- 0.0013498530196296094 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1735 + 2 194 16.77 0.7721 + 3 291 25.15 0.8775 + 4 388 33.53 0.9012 + 5 485 41.91 0.9110 + 6 582 50.30 0.9210 + 7 679 58.68 0.9287 + 8 776 67.06 0.9360 + 9 873 75.44 0.9410 + 10 970 83.82 0.9436 + +69 of 85 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409152941176471 +- 0.0013734889778656161 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2085 + 2 194 16.77 0.7808 + 3 291 25.15 0.8788 + 4 388 33.53 0.9009 + 5 485 41.91 0.9117 + 6 582 50.29 0.9229 + 7 679 58.68 0.9280 + 8 776 67.06 0.9341 + 9 873 75.44 0.9383 + 10 970 83.82 0.9418 + +70 of 86 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409255813953489 +- 0.001368770119020587 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2021 + 2 194 16.77 0.7647 + 3 291 25.15 0.8786 + 4 388 33.53 0.8994 + 5 485 41.91 0.9118 + 6 582 50.29 0.9191 + 7 679 58.68 0.9276 + 8 776 67.06 0.9348 + 9 873 75.44 0.9390 + 10 970 83.82 0.9415 + +71 of 87 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409321839080461 +- 0.0013622576133970725 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1871 + 2 194 16.77 0.7743 + 3 291 25.15 0.8779 + 4 388 33.53 0.9008 + 5 485 41.91 0.9143 + 6 582 50.29 0.9210 + 7 679 58.68 0.9317 + 8 776 67.06 0.9375 + 9 873 75.44 0.9412 + 10 970 83.82 0.9422 + +72 of 88 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409465909090909 +- 0.0013611449778867949 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1602 + 2 194 16.77 0.7761 + 3 291 25.15 0.8784 + 4 388 33.53 0.8988 + 5 485 41.91 0.9115 + 6 582 50.29 0.9213 + 7 679 58.67 0.9277 + 8 776 67.06 0.9336 + 9 873 75.44 0.9376 + 10 970 83.82 0.9413 + +73 of 89 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409505617977528 +- 0.001353988995980844 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1528 + 2 194 16.77 0.7758 + 3 291 25.15 0.8769 + 4 388 33.53 0.9015 + 5 485 41.91 0.9150 + 6 582 50.30 0.9225 + 7 679 58.68 0.9279 + 8 776 67.06 0.9353 + 9 873 75.45 0.9391 + 10 970 83.83 0.9410 + +74 of 90 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409511111111112 +- 0.0013464557957380333 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1469 + 2 194 16.77 0.7698 + 3 291 25.15 0.8761 + 4 388 33.53 0.8977 + 5 485 41.91 0.9116 + 6 582 50.30 0.9201 + 7 679 58.68 0.9282 + 8 776 67.06 0.9343 + 9 873 75.45 0.9381 + 10 970 83.83 0.9412 + +75 of 91 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409538461538461 +- 0.0013392886165085479 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1856 + 2 194 16.77 0.7583 + 3 291 25.15 0.8759 + 4 388 33.53 0.9009 + 5 485 41.91 0.9100 + 6 582 50.29 0.9209 + 7 679 58.67 0.9257 + 8 776 67.06 0.9337 + 9 873 75.44 0.9380 + 10 970 83.82 0.9426 + +76 of 92 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409717391304347 +- 0.001342881885362232 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1997 + 2 194 16.77 0.7691 + 3 291 25.15 0.8740 + 4 388 33.53 0.8997 + 5 485 41.91 0.9119 + 6 582 50.29 0.9213 + 7 679 58.68 0.9298 + 8 776 67.06 0.9357 + 9 873 75.44 0.9395 + 10 970 83.82 0.9419 + +77 of 93 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409817204301076 +- 0.0013390693475468685 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1701 + 2 194 16.77 0.7776 + 3 291 25.15 0.8770 + 4 388 33.53 0.9011 + 5 485 41.91 0.9122 + 6 582 50.29 0.9210 + 7 679 58.67 0.9281 + 8 776 67.06 0.9331 + 9 873 75.44 0.9377 + 10 970 83.82 0.9402 + +78 of 94 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9436 +Mean accuracy: 0.9409734042553193 +- 0.001334339866424902 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2069 + 2 194 16.77 0.7783 + 3 291 25.15 0.8775 + 4 388 33.53 0.9025 + 5 485 41.91 0.9138 + 6 582 50.30 0.9222 + 7 679 58.68 0.9309 + 8 776 67.06 0.9368 + 9 873 75.44 0.9413 + 10 970 83.83 0.9444 + +79 of 95 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9444 +Mean accuracy: 0.9410094736842106 +- 0.001372594445736019 + +Files already downloaded and verified +Preprocessing: 1.31 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1579 + 2 194 16.77 0.7725 + 3 291 25.15 0.8786 + 4 388 33.53 0.8998 + 5 485 41.91 0.9115 + 6 582 50.29 0.9201 + 7 679 58.68 0.9275 + 8 776 67.06 0.9333 + 9 873 75.44 0.9366 + 10 970 83.83 0.9401 + +80 of 96 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9444 +Mean accuracy: 0.9410000000000002 +- 0.001368545456558408 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.2063 + 2 194 16.77 0.7808 + 3 291 25.15 0.8783 + 4 388 33.53 0.8991 + 5 485 41.91 0.9125 + 6 582 50.30 0.9227 + 7 679 58.68 0.9253 + 8 776 67.06 0.9315 + 9 873 75.44 0.9353 + 10 970 83.83 0.9386 + +80 of 97 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9444 +Mean accuracy: 0.9409752577319588 +- 0.001382887381855016 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1519 + 2 194 16.77 0.7667 + 3 291 25.15 0.8728 + 4 388 33.53 0.9021 + 5 485 41.91 0.9114 + 6 582 50.30 0.9203 + 7 679 58.68 0.9277 + 8 776 67.06 0.9333 + 9 873 75.44 0.9405 + 10 970 83.83 0.9427 + +81 of 98 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9444 +Mean accuracy: 0.9409928571428572 +- 0.0013866896420126984 + +Files already downloaded and verified +Preprocessing: 1.32 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1389 + 2 194 16.77 0.7433 + 3 291 25.15 0.8699 + 4 388 33.53 0.8942 + 5 485 41.91 0.9110 + 6 582 50.29 0.9202 + 7 679 58.68 0.9262 + 8 776 67.06 0.9320 + 9 873 75.44 0.9358 + 10 970 83.82 0.9402 + +82 of 99 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9444 +Mean accuracy: 0.9409848484848486 +- 0.0013819444386763934 + +Files already downloaded and verified +Preprocessing: 1.33 seconds + +epoch batch train time [sec] validation accuracy + 1 97 8.38 0.1503 + 2 194 16.77 0.7679 + 3 291 25.15 0.8743 + 4 388 33.53 0.8981 + 5 485 41.91 0.9114 + 6 582 50.30 0.9235 + 7 679 58.68 0.9301 + 8 776 67.06 0.9363 + 9 873 75.44 0.9392 + 10 970 83.83 0.9443 + +83 of 100 runs >= 94.0 % accuracy +Min accuracy: 0.9366000000000001 +Max accuracy: 0.9444 +Mean accuracy: 0.9410180000000001 +- 0.0014140282882601739 + diff --git a/cifar10-fast-simple/model.py b/cifar10-fast-simple/model.py new file mode 100644 index 0000000..fe33495 --- /dev/null +++ b/cifar10-fast-simple/model.py @@ -0,0 +1,141 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F + + +def label_smoothing_loss(inputs, targets, alpha): + log_probs = torch.nn.functional.log_softmax(inputs, dim=1, _stacklevel=5) + kl = -log_probs.mean(dim=1) + xent = torch.nn.functional.nll_loss(log_probs, targets, reduction="none") + loss = (1 - alpha) * xent + alpha * kl + return loss + + +class GhostBatchNorm(nn.BatchNorm2d): + def __init__(self, num_features, num_splits, **kw): + super().__init__(num_features, **kw) + + running_mean = torch.zeros(num_features * num_splits) + running_var = torch.ones(num_features * num_splits) + + self.weight.requires_grad = False + self.num_splits = num_splits + self.register_buffer("running_mean", running_mean) + self.register_buffer("running_var", running_var) + + def train(self, mode=True): + if (self.training is True) and (mode is False): + # lazily collate stats when we are going to use them + self.running_mean = torch.mean( + self.running_mean.view(self.num_splits, self.num_features), dim=0 + ).repeat(self.num_splits) + self.running_var = torch.mean( + self.running_var.view(self.num_splits, self.num_features), dim=0 + ).repeat(self.num_splits) + return super().train(mode) + + def forward(self, input): + n, c, h, w = input.shape + if self.training or not self.track_running_stats: + assert n % self.num_splits == 0, f"Batch size ({n}) must be divisible by num_splits ({self.num_splits}) of GhostBatchNorm" + return F.batch_norm( + input.view(-1, c * self.num_splits, h, w), + self.running_mean, + self.running_var, + self.weight.repeat(self.num_splits), + self.bias.repeat(self.num_splits), + True, + self.momentum, + self.eps, + ).view(n, c, h, w) + else: + return F.batch_norm( + input, + self.running_mean[: self.num_features], + self.running_var[: self.num_features], + self.weight, + self.bias, + False, + self.momentum, + self.eps, + ) + + +def conv_bn_relu(c_in, c_out, kernel_size=(3, 3), padding=(1, 1)): + return nn.Sequential( + nn.Conv2d(c_in, c_out, kernel_size=kernel_size, padding=padding, bias=False), + GhostBatchNorm(c_out, num_splits=16), + nn.CELU(alpha=0.3), + ) + + +def conv_pool_norm_act(c_in, c_out): + return nn.Sequential( + nn.Conv2d(c_in, c_out, kernel_size=(3, 3), padding=(1, 1), bias=False), + nn.MaxPool2d(kernel_size=2, stride=2), + GhostBatchNorm(c_out, num_splits=16), + nn.CELU(alpha=0.3), + ) + + +def patch_whitening(data, patch_size=(3, 3)): + # Compute weights from data such that + # torch.std(F.conv2d(data, weights), dim=(2, 3)) + # is close to 1. + h, w = patch_size + c = data.size(1) + patches = data.unfold(2, h, 1).unfold(3, w, 1) + patches = patches.transpose(1, 3).reshape(-1, c, h, w).to(torch.float32) + + n, c, h, w = patches.shape + X = patches.reshape(n, c * h * w) + X = X / (X.size(0) - 1) ** 0.5 + covariance = X.t() @ X + + eigenvalues, eigenvectors = torch.linalg.eigh(covariance) + + eigenvalues = eigenvalues.flip(0) + + eigenvectors = eigenvectors.t().reshape(c * h * w, c, h, w).flip(0) + + return eigenvectors / torch.sqrt(eigenvalues + 1e-2).view(-1, 1, 1, 1) + + +class ResNetBagOfTricks(nn.Module): + def __init__(self, first_layer_weights, c_in, c_out, scale_out): + super().__init__() + + c = first_layer_weights.size(0) + + conv1 = nn.Conv2d(c_in, c, kernel_size=(3, 3), padding=(1, 1), bias=False) + conv1.weight.data = first_layer_weights + conv1.weight.requires_grad = False + + self.conv1 = conv1 + self.conv2 = conv_bn_relu(c, 64, kernel_size=(1, 1), padding=0) + self.conv3 = conv_pool_norm_act(64, 128) + self.conv4 = conv_bn_relu(128, 128) + self.conv5 = conv_bn_relu(128, 128) + self.conv6 = conv_pool_norm_act(128, 256) + self.conv7 = conv_pool_norm_act(256, 512) + self.conv8 = conv_bn_relu(512, 512) + self.conv9 = conv_bn_relu(512, 512) + self.pool10 = nn.MaxPool2d(kernel_size=4, stride=4) + self.linear11 = nn.Linear(512, c_out, bias=False) + self.scale_out = scale_out + + def forward(self, x): + x = self.conv1(x) + x = self.conv2(x) + x = self.conv3(x) + x = x + self.conv5(self.conv4(x)) + x = self.conv6(x) + x = self.conv7(x) + x = x + self.conv9(self.conv8(x)) + x = self.pool10(x) + x = x.reshape(x.size(0), x.size(1)) + x = self.linear11(x) + x = self.scale_out * x + return x + +Model = ResNetBagOfTricks diff --git a/cifar10-fast-simple/train.py b/cifar10-fast-simple/train.py new file mode 100644 index 0000000..0dba02a --- /dev/null +++ b/cifar10-fast-simple/train.py @@ -0,0 +1,278 @@ +import time +import copy +import torch +import torch.nn as nn +import torchvision +import model + + +def train(seed=0): + # Configurable parameters + epochs = 10 + batch_size = 512 + momentum = 0.9 + weight_decay = 0.256 + weight_decay_bias = 0.004 + ema_update_freq = 5 + ema_rho = 0.99 ** ema_update_freq + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + dtype = torch.float16 if device.type != "cpu" else torch.float32 + + # First, the learning rate rises from 0 to 0.002 for the first 194 batches. + # Next, the learning rate shrinks down to 0.0002 over the next 582 batches. + lr_schedule = torch.cat([ + torch.linspace(0e+0, 2e-3, 194), + torch.linspace(2e-3, 2e-4, 582), + ]) + + lr_schedule_bias = 64.0 * lr_schedule + + # Print information about hardware on first run + if seed == 0: + if device.type == "cuda": + print("Device :", torch.cuda.get_device_name(device.index)) + + print("Dtype :", dtype) + print() + + # Start measuring time + start_time = time.perf_counter() + + # Set random seed to increase chance of reproducability + torch.manual_seed(seed) + + # Setting cudnn.benchmark to True hampers reproducability, but is faster + torch.backends.cudnn.benchmark = True + + # Load dataset + train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype) + + # Compute special weights for first layer + weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4]) + + # Construct the neural network + train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125) + + # Convert model weights to half precision + train_model.to(dtype) + + # Convert BatchNorm back to single precision for better accuracy + for module in train_model.modules(): + if isinstance(module, nn.BatchNorm2d): + module.float() + + # Upload model to GPU + train_model.to(device) + + # Collect weights and biases and create nesterov velocity values + weights = [ + (w, torch.zeros_like(w)) + for w in train_model.parameters() + if w.requires_grad and len(w.shape) > 1 + ] + biases = [ + (w, torch.zeros_like(w)) + for w in train_model.parameters() + if w.requires_grad and len(w.shape) <= 1 + ] + + # Copy the model for validation + valid_model = copy.deepcopy(train_model) + + print(f"Preprocessing: {time.perf_counter() - start_time:.2f} seconds") + + # Train and validate + print("\nepoch batch train time [sec] validation accuracy") + train_time = 0.0 + batch_count = 0 + for epoch in range(1, epochs + 1): + # Flush CUDA pipeline for more accurate time measurement + if torch.cuda.is_available(): + torch.cuda.synchronize() + + start_time = time.perf_counter() + + # Randomly shuffle training data + indices = torch.randperm(len(train_data), device=device) + data = train_data[indices] + targets = train_targets[indices] + + # Crop random 32x32 patches from 40x40 training data + data = [ + random_crop(data[i : i + batch_size], crop_size=(32, 32)) + for i in range(0, len(data), batch_size) + ] + data = torch.cat(data) + + # Randomly flip half the training data + data[: len(data) // 2] = torch.flip(data[: len(data) // 2], [-1]) + + for i in range(0, len(data), batch_size): + # discard partial batches + if i + batch_size > len(data): + break + + # Slice batch from data + inputs = data[i : i + batch_size] + target = targets[i : i + batch_size] + batch_count += 1 + + # Compute new gradients + train_model.zero_grad() + train_model.train(True) + + logits = train_model(inputs) + + loss = model.label_smoothing_loss(logits, target, alpha=0.2) + + loss.sum().backward() + + lr_index = min(batch_count, len(lr_schedule) - 1) + lr = lr_schedule[lr_index] + lr_bias = lr_schedule_bias[lr_index] + + # Update weights and biases of training model + update_nesterov(weights, lr, weight_decay, momentum) + update_nesterov(biases, lr_bias, weight_decay_bias, momentum) + + # Update validation model with exponential moving averages + if (i // batch_size % ema_update_freq) == 0: + update_ema(train_model, valid_model, ema_rho) + + if torch.cuda.is_available(): + torch.cuda.synchronize() + + # Add training time + train_time += time.perf_counter() - start_time + + valid_correct = [] + for i in range(0, len(valid_data), batch_size): + valid_model.train(False) + + # Test time agumentation: Test model on regular and flipped data + regular_inputs = valid_data[i : i + batch_size] + flipped_inputs = torch.flip(regular_inputs, [-1]) + + logits1 = valid_model(regular_inputs).detach() + logits2 = valid_model(flipped_inputs).detach() + + # Final logits are average of augmented logits + logits = torch.mean(torch.stack([logits1, logits2], dim=0), dim=0) + + # Compute correct predictions + correct = logits.max(dim=1)[1] == valid_targets[i : i + batch_size] + + valid_correct.append(correct.detach().type(torch.float64)) + + # Accuracy is average number of correct predictions + valid_acc = torch.mean(torch.cat(valid_correct)).item() + + print(f"{epoch:5} {batch_count:8d} {train_time:19.2f} {valid_acc:22.4f}") + + return valid_acc + +def preprocess_data(data, device, dtype): + # Convert to torch float16 tensor + data = torch.tensor(data, device=device).to(dtype) + + # Normalize + mean = torch.tensor([125.31, 122.95, 113.87], device=device).to(dtype) + std = torch.tensor([62.99, 62.09, 66.70], device=device).to(dtype) + data = (data - mean) / std + + # Permute data from NHWC to NCHW format + data = data.permute(0, 3, 1, 2) + + return data + + +def load_cifar10(device, dtype, data_dir="~/data"): + train = torchvision.datasets.CIFAR10(root=data_dir, download=True) + valid = torchvision.datasets.CIFAR10(root=data_dir, train=False) + + train_data = preprocess_data(train.data, device, dtype) + valid_data = preprocess_data(valid.data, device, dtype) + + train_targets = torch.tensor(train.targets).to(device) + valid_targets = torch.tensor(valid.targets).to(device) + + # Pad 32x32 to 40x40 + train_data = nn.ReflectionPad2d(4)(train_data) + + return train_data, train_targets, valid_data, valid_targets + + +def update_ema(train_model, valid_model, rho): + # The trained model is not used for validation directly. Instead, the + # validation model weights are updated with exponential moving averages. + train_weights = train_model.state_dict().values() + valid_weights = valid_model.state_dict().values() + for train_weight, valid_weight in zip(train_weights, valid_weights): + if valid_weight.dtype in [torch.float16, torch.float32]: + valid_weight *= rho + valid_weight += (1 - rho) * train_weight + + +def update_nesterov(weights, lr, weight_decay, momentum): + for weight, velocity in weights: + if weight.requires_grad: + gradient = weight.grad.data + weight = weight.data + + gradient.add_(weight, alpha=weight_decay).mul_(-lr) + velocity.mul_(momentum).add_(gradient) + weight.add_(gradient.add_(velocity, alpha=momentum)) + + +def random_crop(data, crop_size): + crop_h, crop_w = crop_size + h = data.size(2) + w = data.size(3) + x = torch.randint(w - crop_w, size=(1,))[0] + y = torch.randint(h - crop_h, size=(1,))[0] + return data[:, :, y : y + crop_h, x : x + crop_w] + + +def sha256(path): + import hashlib + with open(path, "rb") as f: + return hashlib.sha256(f.read()).hexdigest() + + +def getrelpath(abspath): + import os + return os.path.relpath(abspath, os.getcwd()) + + +def print_info(): + # Knowing this information might improve chance of reproducability + print("File :", getrelpath(__file__), sha256(__file__)) + print("Model :", getrelpath(model.__file__), sha256(model.__file__)) + print("PyTorch:", torch.__version__) + + +def main(): + print_info() + + accuracies = [] + threshold = 0.94 + for run in range(100): + valid_acc = train(seed=run) + accuracies.append(valid_acc) + + # Print accumulated results + within_threshold = sum(acc >= threshold for acc in accuracies) + acc = threshold * 100.0 + print() + print(f"{within_threshold} of {run + 1} runs >= {acc} % accuracy") + mean = sum(accuracies) / len(accuracies) + variance = sum((acc - mean)**2 for acc in accuracies) / len(accuracies) + std = variance**0.5 + print(f"Min accuracy: {min(accuracies)}") + print(f"Max accuracy: {max(accuracies)}") + print(f"Mean accuracy: {mean} +- {std}") + print() + + +if __name__ == "__main__": + main()