Torchlira: attempt microbatch

This commit is contained in:
Akemi Izuko 2024-11-29 19:43:38 -07:00
parent c7eee3cdc2
commit 1b099f4dad
Signed by: akemi
GPG key ID: 8DE0764E1809E9FC

View file

@ -21,6 +21,8 @@ from tqdm import tqdm
from opacus.validators import ModuleValidator from opacus.validators import ModuleValidator
from opacus import PrivacyEngine from opacus import PrivacyEngine
from opacus.utils.batch_memory_manager import BatchMemoryManager from opacus.utils.batch_memory_manager import BatchMemoryManager
import pyvacy
#from pyvacy import optim#, analysis, sampling
from wide_resnet import WideResNet from wide_resnet import WideResNet
@ -113,6 +115,12 @@ def run():
ModuleValidator.validate(m, strict=True) ModuleValidator.validate(m, strict=True)
optim = torch.optim.SGD(m.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4) optim = torch.optim.SGD(m.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
#optim = pyvacy.DPSGD(
# params=m.parameters(),
# lr=args.lr,
# momentum=0.9,
# weight_decay=5e-4,
#)
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=args.epochs) sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=args.epochs)
privacy_engine = PrivacyEngine() privacy_engine = PrivacyEngine()
@ -124,12 +132,13 @@ def run():
target_epsilon=1, target_epsilon=1,
target_delta=1e-4, target_delta=1e-4,
max_grad_norm=1.0, max_grad_norm=1.0,
batch_first=True,
) )
print(f"Device: {DEVICE}") print(f"Device: {DEVICE}")
accumulation_steps = 10
# Train # Train
# max_physical_batch_size=MAX_PHYSICAL_BATCH_SIZE,
with BatchMemoryManager( with BatchMemoryManager(
data_loader=train_dl, data_loader=train_dl,
max_physical_batch_size=1000, max_physical_batch_size=1000,
@ -142,7 +151,17 @@ def run():
#pbar = tqdm(train_dl, leave=False) #pbar = tqdm(train_dl, leave=False)
for itr, (x, y) in enumerate(pbar): for itr, (x, y) in enumerate(pbar):
x, y = x.to(DEVICE), y.to(DEVICE) x, y = x.to(DEVICE), y.to(DEVICE)
if False:
loss = F.cross_entropy(m(x), y) / accumulation_steps
loss_norm = loss / accumulation_steps
loss_total += loss_norm
loss_norm.backward()
pbar.set_postfix_str(f"loss: {loss:.2f}")
if ((itr + 1) % accumulation_steps == 0) or (itr + 1 == len(memory_safe_data_loader)):
optim.step()
optim.zero_grad()
else:
loss = F.cross_entropy(m(x), y) loss = F.cross_entropy(m(x), y)
loss_total += loss loss_total += loss