Torchlira: add additional networks
This commit is contained in:
parent
1b099f4dad
commit
2b865a5f58
1 changed files with 101 additions and 42 deletions
|
@ -41,6 +41,60 @@ DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mp
|
||||||
EPOCHS = args.epochs
|
EPOCHS = args.epochs
|
||||||
|
|
||||||
|
|
||||||
|
class DewisNet(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super(DewisNet, self).__init__()
|
||||||
|
# I started my model from the tutorial: https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html,
|
||||||
|
# then modified it.
|
||||||
|
|
||||||
|
# 2 convolutional layers, with pooling after each
|
||||||
|
self.conv1 = nn.Conv2d(3, 12, 5)
|
||||||
|
self.conv2 = nn.Conv2d(12, 32, 5)
|
||||||
|
self.pool = nn.MaxPool2d(2, 2)
|
||||||
|
|
||||||
|
# 3 linear layers
|
||||||
|
self.fc1 = nn.Linear(32 * 5 * 5, 120)
|
||||||
|
self.fc2 = nn.Linear(120, 84)
|
||||||
|
self.fc3 = nn.Linear(84, 10)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.pool(F.relu(self.conv1(x)))
|
||||||
|
x = self.pool(F.relu(self.conv2(x)))
|
||||||
|
x = torch.flatten(x, 1)
|
||||||
|
x = F.relu(self.fc1(x))
|
||||||
|
x = F.relu(self.fc2(x))
|
||||||
|
x = self.fc3(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class JagielskiNet(nn.Module):
|
||||||
|
def __init__(self, input_shape, num_classes, l2=0.01):
|
||||||
|
super(JagielskiNet, self).__init__()
|
||||||
|
self.flatten = nn.Flatten()
|
||||||
|
|
||||||
|
input_dim = 1
|
||||||
|
for dim in input_shape:
|
||||||
|
input_dim *= dim
|
||||||
|
|
||||||
|
self.dense1 = nn.Linear(input_dim, 32)
|
||||||
|
self.relu1 = nn.ReLU()
|
||||||
|
self.dense2 = nn.Linear(32, num_classes)
|
||||||
|
|
||||||
|
# Initialize weights with Glorot Normal (Xavier Normal)
|
||||||
|
torch.nn.init.xavier_normal_(self.dense1.weight)
|
||||||
|
torch.nn.init.xavier_normal_(self.dense2.weight)
|
||||||
|
|
||||||
|
# L2 regularization (weight decay)
|
||||||
|
self.l2 = l2
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.flatten(x)
|
||||||
|
x = self.dense1(x)
|
||||||
|
x = self.relu1(x)
|
||||||
|
x = self.dense2(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
def run():
|
def run():
|
||||||
seed = np.random.randint(0, 1000000000)
|
seed = np.random.randint(0, 1000000000)
|
||||||
seed ^= int(time.time())
|
seed ^= int(time.time())
|
||||||
|
@ -92,18 +146,19 @@ def run():
|
||||||
keep_bool[keep] = True
|
keep_bool[keep] = True
|
||||||
|
|
||||||
train_ds = torch.utils.data.Subset(train_ds, keep)
|
train_ds = torch.utils.data.Subset(train_ds, keep)
|
||||||
train_dl = DataLoader(train_ds, batch_size=128, shuffle=True, num_workers=4)
|
train_dl = DataLoader(train_ds, batch_size=256, shuffle=True, num_workers=4)
|
||||||
test_dl = DataLoader(test_ds, batch_size=128, shuffle=False, num_workers=4)
|
test_dl = DataLoader(test_ds, batch_size=128, shuffle=False, num_workers=4)
|
||||||
|
|
||||||
# Model
|
# Model
|
||||||
if args.model == "wresnet28-2":
|
if args.model == "dewisnet":
|
||||||
|
m = DewisNet()
|
||||||
|
elif args.model == "jnet":
|
||||||
|
m = JagielskiNet((3,32,32), 10)
|
||||||
|
elif args.model == "wresnet28-2":
|
||||||
m = WideResNet(28, 2, 0.0, 10)
|
m = WideResNet(28, 2, 0.0, 10)
|
||||||
print("one")
|
|
||||||
elif args.model == "wresnet28-10":
|
elif args.model == "wresnet28-10":
|
||||||
m = WideResNet(28, 10, 0.3, 10)
|
m = WideResNet(28, 10, 0.3, 10)
|
||||||
print("two")
|
|
||||||
elif args.model == "resnet18":
|
elif args.model == "resnet18":
|
||||||
print("three")
|
|
||||||
m = models.resnet18(weights=None, num_classes=10)
|
m = models.resnet18(weights=None, num_classes=10)
|
||||||
m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
|
||||||
m.maxpool = nn.Identity()
|
m.maxpool = nn.Identity()
|
||||||
|
@ -114,6 +169,7 @@ def run():
|
||||||
m = ModuleValidator.fix(m)
|
m = ModuleValidator.fix(m)
|
||||||
ModuleValidator.validate(m, strict=True)
|
ModuleValidator.validate(m, strict=True)
|
||||||
|
|
||||||
|
print(f"Device: {DEVICE}")
|
||||||
optim = torch.optim.SGD(m.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
|
optim = torch.optim.SGD(m.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
|
||||||
#optim = pyvacy.DPSGD(
|
#optim = pyvacy.DPSGD(
|
||||||
# params=m.parameters(),
|
# params=m.parameters(),
|
||||||
|
@ -123,22 +179,20 @@ def run():
|
||||||
#)
|
#)
|
||||||
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=args.epochs)
|
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=args.epochs)
|
||||||
|
|
||||||
|
# Train
|
||||||
|
if False:
|
||||||
privacy_engine = PrivacyEngine()
|
privacy_engine = PrivacyEngine()
|
||||||
m, optim, train_dl = privacy_engine.make_private_with_epsilon(
|
m, optim, train_dl = privacy_engine.make_private_with_epsilon(
|
||||||
module=m,
|
module=m,
|
||||||
optimizer=optim,
|
optimizer=optim,
|
||||||
data_loader=train_dl,
|
data_loader=train_dl,
|
||||||
epochs=args.epochs,
|
epochs=args.epochs,
|
||||||
target_epsilon=1,
|
target_epsilon=8,
|
||||||
target_delta=1e-4,
|
target_delta=1e-4,
|
||||||
max_grad_norm=1.0,
|
max_grad_norm=1.0,
|
||||||
batch_first=True,
|
batch_first=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
print(f"Device: {DEVICE}")
|
|
||||||
accumulation_steps = 10
|
|
||||||
|
|
||||||
# Train
|
|
||||||
with BatchMemoryManager(
|
with BatchMemoryManager(
|
||||||
data_loader=train_dl,
|
data_loader=train_dl,
|
||||||
max_physical_batch_size=1000,
|
max_physical_batch_size=1000,
|
||||||
|
@ -148,20 +202,25 @@ def run():
|
||||||
m.train()
|
m.train()
|
||||||
loss_total = 0
|
loss_total = 0
|
||||||
pbar = tqdm(memory_safe_data_loader, leave=False)
|
pbar = tqdm(memory_safe_data_loader, leave=False)
|
||||||
#pbar = tqdm(train_dl, leave=False)
|
|
||||||
for itr, (x, y) in enumerate(pbar):
|
for itr, (x, y) in enumerate(pbar):
|
||||||
x, y = x.to(DEVICE), y.to(DEVICE)
|
x, y = x.to(DEVICE), y.to(DEVICE)
|
||||||
if False:
|
loss = F.cross_entropy(m(x), y)
|
||||||
loss = F.cross_entropy(m(x), y) / accumulation_steps
|
loss_total += loss
|
||||||
loss_norm = loss / accumulation_steps
|
|
||||||
loss_total += loss_norm
|
|
||||||
loss_norm.backward()
|
|
||||||
pbar.set_postfix_str(f"loss: {loss:.2f}")
|
|
||||||
|
|
||||||
if ((itr + 1) % accumulation_steps == 0) or (itr + 1 == len(memory_safe_data_loader)):
|
pbar.set_postfix_str(f"loss: {loss:.2f}")
|
||||||
optim.step()
|
|
||||||
optim.zero_grad()
|
optim.zero_grad()
|
||||||
|
loss.backward()
|
||||||
|
optim.step()
|
||||||
|
sched.step()
|
||||||
|
|
||||||
|
wandb.log({"loss": loss_total / len(train_dl)})
|
||||||
else:
|
else:
|
||||||
|
for i in tqdm(range(args.epochs)):
|
||||||
|
m.train()
|
||||||
|
loss_total = 0
|
||||||
|
pbar = tqdm(train_dl, leave=False)
|
||||||
|
for itr, (x, y) in enumerate(pbar):
|
||||||
|
x, y = x.to(DEVICE), y.to(DEVICE)
|
||||||
loss = F.cross_entropy(m(x), y)
|
loss = F.cross_entropy(m(x), y)
|
||||||
loss_total += loss
|
loss_total += loss
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue