diff --git a/one_run_audit/audit.py b/one_run_audit/audit.py index 4aefae6..d10c563 100644 --- a/one_run_audit/audit.py +++ b/one_run_audit/audit.py @@ -47,24 +47,32 @@ def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10): train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform) test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform) + # Original dataset + x = np.stack(train_ds[i][0].numpy() for i in range(len(train_ds))) # Applies transforms + + # Choose m points to randomly exclude at chance S = np.full(len(train_ds), True) S[:m] = np.random.choice([True, False], size=m) # Vector of determining if each point is in or out p = np.random.permutation(len(train_ds)) - x_in = np.stack(train_ds[i][0].numpy() for i in range(len(train_ds))) # Applies transforms - x_in = x_in[S[p]] + # Store the m points which could have been included/excluded + mask = np.full(len(train_ds), False) + mask[:m] = True + mask = mask[p] + + x_m = x[mask] # These are the points being guessed at + y_m = np.array(train_ds.targets)[mask].astype(np.int64) + + # Remove excluded points from dataset + x_in = x[S[p]] y_in = np.array(train_ds.targets).astype(np.int64) y_in = y_in[S[p]] - x_m = np.full(len(train_ds), False) - x_m[:m] = True - x_m = x_m[p] # These are the points being guessed at - td = TensorDataset(torch.from_numpy(x_in), torch.from_numpy(y_in).long()) train_dl = DataLoader(td, batch_size=train_batch_size, shuffle=True, num_workers=4) test_dl = DataLoader(test_ds, batch_size=test_batch_size, shuffle=True, num_workers=4) - return train_dl, test_dl, x_in, x_m, S[p] + return train_dl, test_dl, x_in, x_m, y_m, S[p] def evaluate_on(model, dataloader): @@ -230,20 +238,47 @@ def main(): hp['norm'], )) - train_dl, test_dl, x_in, x_m, S = get_dataloaders(hp['target_points'], hp['batch_size']) + train_dl, test_dl, x_in, x_m, y_m, S = get_dataloaders(hp['target_points'], hp['batch_size']) + print(f"len train: {len(train_dl)}") print(f"Got vector S: {S.shape}, sum={np.sum(S)}, S[:{hp['target_points']}] = {S[:8]}") print(f"Got x_in: {x_in.shape}") - print(f"Got x_m: {x_m.shape}, sum={np.sum(S)}, x_m[:{hp['target_points']}] = {x_m[:8]}") - print(f"S @ x_m: sum={np.sum(S[x_m])}, S[x_m][:{hp['target_points']}] = {S[x_m][:8]}") - print(f"Got train dataloader: {len(train_dl)}") + print(f"Got x_m: {x_m.shape}") + print(f"Got y_m: {y_m.shape}") + + for x, y in train_dl: + print(f"dl x shape: {x.shape}") + print(f"dl y shape: {y.shape}") + break + model_init, model_trained = train(hp, train_dl, test_dl) + # torch.save(model_init.state_dict(), "data/init_model.pt") + # torch.save(model_trained.state_dict(), "data/trained_model.pt") + + scores = list() + criterion = nn.CrossEntropyLoss() + with torch.no_grad(): + model_init.eval() + x_m = torch.from_numpy(x_m).to(DEVICE) + y_m = torch.from_numpy(y_m).long().to(DEVICE) + + for i in range(len(x_m)): + x_point = x_m[i].unsqueeze(0) + y_point = y_m[i].unsqueeze(0) + + init_loss = criterion(model_init(x_point)[0], y_point) + trained_loss = criterion(model_trained(x_point)[0], y_point) + + scores.append(init_loss - trained_loss) + + print(len(scores)) + print(scores[:10]) + correct, total = evaluate_on(model_init, train_dl) print(f"Init model accuracy: {correct}/{total} = {round(correct/total*100, 2)}") correct, total = evaluate_on(model_trained, test_dl) print(f"Done model accuracy: {correct}/{total} = {round(correct/total*100, 2)}") - torch.save(model_trained.state_dict(), hp['logfile'].with_suffix('.pt')) if __name__ == '__main__': main()