O1: get audit vectors
This commit is contained in:
parent
4692502763
commit
5d6f7e2916
1 changed files with 17 additions and 12 deletions
|
@ -49,11 +49,11 @@ def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10):
|
|||
|
||||
# Original dataset
|
||||
x = np.stack(train_ds[i][0].numpy() for i in range(len(train_ds))) # Applies transforms
|
||||
p = np.random.permutation(len(train_ds))
|
||||
|
||||
# Choose m points to randomly exclude at chance
|
||||
S = np.full(len(train_ds), True)
|
||||
S[:m] = np.random.choice([True, False], size=m) # Vector of determining if each point is in or out
|
||||
p = np.random.permutation(len(train_ds))
|
||||
|
||||
# Store the m points which could have been included/excluded
|
||||
mask = np.full(len(train_ds), False)
|
||||
|
@ -62,6 +62,7 @@ def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10):
|
|||
|
||||
x_m = x[mask] # These are the points being guessed at
|
||||
y_m = np.array(train_ds.targets)[mask].astype(np.int64)
|
||||
S_m = S[p][mask] # Ground truth of inclusion/exclusion for x_m
|
||||
|
||||
# Remove excluded points from dataset
|
||||
x_in = x[S[p]]
|
||||
|
@ -72,7 +73,7 @@ def get_dataloaders(m=1000, train_batch_size=128, test_batch_size=10):
|
|||
train_dl = DataLoader(td, batch_size=train_batch_size, shuffle=True, num_workers=4)
|
||||
test_dl = DataLoader(test_ds, batch_size=test_batch_size, shuffle=True, num_workers=4)
|
||||
|
||||
return train_dl, test_dl, x_in, x_m, y_m, S[p]
|
||||
return train_dl, test_dl, x_in, x_m, y_m, S_m
|
||||
|
||||
|
||||
def evaluate_on(model, dataloader):
|
||||
|
@ -224,7 +225,9 @@ def main():
|
|||
"delta": 1e-5,
|
||||
"norm": args.norm,
|
||||
"batch_size": 4096,
|
||||
"epochs": 20,
|
||||
"epochs": 2,
|
||||
"k+": 300,
|
||||
"k-": 300,
|
||||
}
|
||||
|
||||
hp['logfile'] = Path('WideResNet_{}_{}_{}_{}s_x{}_{}e_{}d_{}C.txt'.format(
|
||||
|
@ -238,18 +241,13 @@ def main():
|
|||
hp['norm'],
|
||||
))
|
||||
|
||||
train_dl, test_dl, x_in, x_m, y_m, S = get_dataloaders(hp['target_points'], hp['batch_size'])
|
||||
train_dl, test_dl, x_in, x_m, y_m, S_m = get_dataloaders(hp['target_points'], hp['batch_size'])
|
||||
print(f"len train: {len(train_dl)}")
|
||||
print(f"Got vector S: {S.shape}, sum={np.sum(S)}, S[:{hp['target_points']}] = {S[:8]}")
|
||||
print(f"Got vector Sm: {S_m.shape}, sum={np.sum(S_m)}")
|
||||
print(f"Got x_in: {x_in.shape}")
|
||||
print(f"Got x_m: {x_m.shape}")
|
||||
print(f"Got y_m: {y_m.shape}")
|
||||
|
||||
for x, y in train_dl:
|
||||
print(f"dl x shape: {x.shape}")
|
||||
print(f"dl y shape: {y.shape}")
|
||||
break
|
||||
|
||||
model_init, model_trained = train(hp, train_dl, test_dl)
|
||||
|
||||
# torch.save(model_init.state_dict(), "data/init_model.pt")
|
||||
|
@ -265,15 +263,22 @@ def main():
|
|||
for i in range(len(x_m)):
|
||||
x_point = x_m[i].unsqueeze(0)
|
||||
y_point = y_m[i].unsqueeze(0)
|
||||
is_in = S_m[i]
|
||||
|
||||
init_loss = criterion(model_init(x_point)[0], y_point)
|
||||
trained_loss = criterion(model_trained(x_point)[0], y_point)
|
||||
|
||||
scores.append(init_loss - trained_loss)
|
||||
scores.append(((init_loss - trained_loss).item(), is_in))
|
||||
|
||||
scores = sorted(scores, key=lambda x: x[0])
|
||||
scores = np.array([x[1] for x in scores])
|
||||
|
||||
print(len(scores))
|
||||
print(scores[:10])
|
||||
|
||||
correct = np.sum(~scores[:hp['k-']]) + np.sum(scores[-hp['k+']:])
|
||||
total = len(scores)
|
||||
print(f"Audit total: {correct}/{total} = {round(correct/total*100, 2)}")
|
||||
|
||||
correct, total = evaluate_on(model_init, train_dl)
|
||||
print(f"Init model accuracy: {correct}/{total} = {round(correct/total*100, 2)}")
|
||||
correct, total = evaluate_on(model_trained, test_dl)
|
||||
|
|
Loading…
Reference in a new issue