O1: add simple convnet

This commit is contained in:
Akemi Izuko 2024-12-07 14:00:06 -07:00
parent 7b77748dcd
commit 5da8c44743
Signed by: akemi
GPG key ID: 8DE0764E1809E9FC
2 changed files with 127 additions and 1 deletions

View file

@ -587,6 +587,75 @@ def train_fast(hp, train_dl, test_dl, train_x):
train_no_cap(model, hp, train_dl, test_dl, optimizer, criterion, scheduler)
return init_model, model
def train_convnet(hp, train_dl, test_dl):
model = convnet_classifier.ConvNet()
model = model.to(DEVICE)
#model = ModuleValidator.fix(model)
ModuleValidator.validate(model, strict=True)
model_init = copy.deepcopy(model)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=1e-3)
#if hp['epochs'] <= 10:
# optimizer = optim.Adam(model.parameters(), lr=lr)
#elif hp['epochs'] > 10 and hp['epochs'] <= 25:
# optimizer = optim.Adam(model.parameters(), lr=(lr/10))
#else:
# optimizer = optim.Adam(model.parameters(), lr=(lr/50))
scheduler = MultiStepLR(optimizer, milestones=[10, 25], gamma=0.1)
# scheduler = MultiStepLR(
# optimizer,
# milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
# gamma=0.2
# )
print(f"Training with {hp['epochs']} epochs")
if hp['epsilon'] is not None:
privacy_engine = opacus.PrivacyEngine()
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=model,
optimizer=optimizer,
data_loader=train_dl,
epochs=hp['epochs'],
target_epsilon=hp['epsilon'],
target_delta=hp['delta'],
max_grad_norm=hp['norm'],
)
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
with BatchMemoryManager(
data_loader=train_loader,
max_physical_batch_size=2000, # 1000 ~= 9.4GB vram
optimizer=optimizer
) as memory_safe_data_loader:
best_test_set_accuracy = train_no_cap(
model,
hp,
memory_safe_data_loader,
test_dl,
optimizer,
criterion,
scheduler,
)
else:
print("Training without differential privacy")
best_test_set_accuracy = train_no_cap(
model,
hp,
train_dl,
test_dl,
optimizer,
criterion,
scheduler,
)
return model_init, model
def train(hp, train_dl, test_dl):
model = WideResNet(
d=hp["wrn_depth"],
@ -677,6 +746,7 @@ def main():
parser.add_argument('--distill', action='store_true', help='train a raw student', required=False)
parser.add_argument('--fast', action='store_true', help='train the fast model', required=False)
parser.add_argument('--wrn2', action='store_true', help='Train a groupnormed wrn', required=False)
parser.add_argument('--convnet', action='store_true', help='Train a convnet', required=False)
args = parser.parse_args()
if torch.cuda.is_available() and args.cuda:
@ -696,7 +766,7 @@ def main():
"epsilon": args.epsilon,
"delta": 1e-5,
"norm": args.norm,
"batch_size": 4096,
"batch_size": 50 if args.convnet else 4096,
"epochs": args.epochs,
"p_value": 0.05,
}
@ -726,6 +796,11 @@ def main():
print("Training wrn2 model from meta")
print("=========================")
model_init, model_trained = train_wrn2(hp, train_dl, test_dl)
elif args.convnet:
print("=========================")
print("Training a simple convnet")
print("=========================")
model_init, model_trained = train_convnet(hp, train_dl, test_dl)
elif args.studentraw:
print("=========================")
print("Training a raw student model")

View file

@ -0,0 +1,51 @@
# Name: Peng Cheng
# UIN: 674792652
#
# Code adapted from:
# https://github.com/jameschengpeng/PyTorch-CNN-on-CIFAR10
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),
])
class ConvNet(nn.Module):
def __init__(self):
super(ConvNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=48, kernel_size=(3,3), padding=(1,1))
self.conv2 = nn.Conv2d(in_channels=48, out_channels=96, kernel_size=(3,3), padding=(1,1))
self.conv3 = nn.Conv2d(in_channels=96, out_channels=192, kernel_size=(3,3), padding=(1,1))
self.conv4 = nn.Conv2d(in_channels=192, out_channels=256, kernel_size=(3,3), padding=(1,1))
self.pool = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(in_features=8*8*256, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=64)
self.Dropout = nn.Dropout(0.25)
self.fc3 = nn.Linear(in_features=64, out_features=10)
def forward(self, x):
x = F.relu(self.conv1(x)) #32*32*48
x = F.relu(self.conv2(x)) #32*32*96
x = self.pool(x) #16*16*96
x = self.Dropout(x)
x = F.relu(self.conv3(x)) #16*16*192
x = F.relu(self.conv4(x)) #16*16*256
x = self.pool(x) # 8*8*256
x = self.Dropout(x)
x = x.view(-1, 8*8*256) # reshape x
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.Dropout(x)
x = self.fc3(x)
return x