O1: wrn2 fixes
This commit is contained in:
parent
2586c351d9
commit
7b77748dcd
1 changed files with 89 additions and 15 deletions
|
@ -15,12 +15,15 @@ from torchvision.datasets import CIFAR10
|
||||||
import pytorch_lightning as pl
|
import pytorch_lightning as pl
|
||||||
import opacus
|
import opacus
|
||||||
import random
|
import random
|
||||||
|
from tqdm import tqdm
|
||||||
from opacus.validators import ModuleValidator
|
from opacus.validators import ModuleValidator
|
||||||
from opacus.utils.batch_memory_manager import BatchMemoryManager
|
from opacus.utils.batch_memory_manager import BatchMemoryManager
|
||||||
from WideResNet import WideResNet
|
from WideResNet import WideResNet
|
||||||
from equations import get_eps_audit
|
from equations import get_eps_audit
|
||||||
import student_model
|
import student_model
|
||||||
import fast_model
|
import fast_model
|
||||||
|
import convnet_classifier
|
||||||
|
import wrn
|
||||||
import warnings
|
import warnings
|
||||||
warnings.filterwarnings("ignore")
|
warnings.filterwarnings("ignore")
|
||||||
|
|
||||||
|
@ -230,8 +233,10 @@ def get_dataloaders_raw(m=1000, train_batch_size=512, test_batch_size=10):
|
||||||
|
|
||||||
train_x = preprocess_data(train_x)
|
train_x = preprocess_data(train_x)
|
||||||
test_x = preprocess_data(test_x)
|
test_x = preprocess_data(test_x)
|
||||||
|
attack_x = preprocess_data(attack_x)
|
||||||
train_y = torch.tensor(train_y)
|
train_y = torch.tensor(train_y)
|
||||||
test_y = torch.tensor(test_y)
|
test_y = torch.tensor(test_y)
|
||||||
|
attack_y = torch.tensor(attack_y)
|
||||||
|
|
||||||
train_dl = DataLoader(
|
train_dl = DataLoader(
|
||||||
TensorDataset(train_x, train_y.long()),
|
TensorDataset(train_x, train_y.long()),
|
||||||
|
@ -246,7 +251,7 @@ def get_dataloaders_raw(m=1000, train_batch_size=512, test_batch_size=10):
|
||||||
shuffle=True,
|
shuffle=True,
|
||||||
num_workers=4
|
num_workers=4
|
||||||
)
|
)
|
||||||
return train_dl, test_dl, train_x
|
return train_dl, test_dl, train_x, attack_x.numpy(), attack_y.numpy(), S
|
||||||
|
|
||||||
def evaluate_on(model, dataloader):
|
def evaluate_on(model, dataloader):
|
||||||
correct = 0
|
correct = 0
|
||||||
|
@ -398,6 +403,70 @@ def load(hp, model_path, train_dl):
|
||||||
return model_init, model, adv_points, adv_labels, S
|
return model_init, model, adv_points, adv_labels, S
|
||||||
|
|
||||||
|
|
||||||
|
def train_wrn2(hp, train_dl, test_dl):
|
||||||
|
model = wrn.WideResNet(16, 10, 4)
|
||||||
|
model = model.to(DEVICE)
|
||||||
|
#model = ModuleValidator.fix(model)
|
||||||
|
ModuleValidator.validate(model, strict=True)
|
||||||
|
model_init = copy.deepcopy(model)
|
||||||
|
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = optim.SGD(
|
||||||
|
model.parameters(),
|
||||||
|
lr=0.12,
|
||||||
|
momentum=0.9,
|
||||||
|
weight_decay=1e-4
|
||||||
|
)
|
||||||
|
scheduler = MultiStepLR(
|
||||||
|
optimizer,
|
||||||
|
milestones=[int(i * hp['epochs']) for i in [0.3, 0.6, 0.8]],
|
||||||
|
gamma=0.1
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Training with {hp['epochs']} epochs")
|
||||||
|
|
||||||
|
if hp['epsilon'] is not None:
|
||||||
|
privacy_engine = opacus.PrivacyEngine()
|
||||||
|
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||||
|
module=model,
|
||||||
|
optimizer=optimizer,
|
||||||
|
data_loader=train_dl,
|
||||||
|
epochs=hp['epochs'],
|
||||||
|
target_epsilon=hp['epsilon'],
|
||||||
|
target_delta=hp['delta'],
|
||||||
|
max_grad_norm=hp['norm'],
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"DP epsilon = {hp['epsilon']}, delta = {hp['delta']}")
|
||||||
|
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {hp['norm']}")
|
||||||
|
|
||||||
|
with BatchMemoryManager(
|
||||||
|
data_loader=train_loader,
|
||||||
|
max_physical_batch_size=10, # 1000 ~= 9.4GB vram
|
||||||
|
optimizer=optimizer
|
||||||
|
) as memory_safe_data_loader:
|
||||||
|
best_test_set_accuracy = train_no_cap(
|
||||||
|
model,
|
||||||
|
hp,
|
||||||
|
memory_safe_data_loader,
|
||||||
|
test_dl,
|
||||||
|
optimizer,
|
||||||
|
criterion,
|
||||||
|
scheduler,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
print("Training without differential privacy")
|
||||||
|
best_test_set_accuracy = train_no_cap(
|
||||||
|
model,
|
||||||
|
hp,
|
||||||
|
train_dl,
|
||||||
|
test_dl,
|
||||||
|
optimizer,
|
||||||
|
criterion,
|
||||||
|
scheduler,
|
||||||
|
)
|
||||||
|
|
||||||
|
return model_init, model
|
||||||
|
|
||||||
def train_small(hp, train_dl, test_dl):
|
def train_small(hp, train_dl, test_dl):
|
||||||
model = student_model.Model(num_classes=10).to(DEVICE)
|
model = student_model.Model(num_classes=10).to(DEVICE)
|
||||||
|
@ -460,7 +529,7 @@ def train_small(hp, train_dl, test_dl):
|
||||||
|
|
||||||
return model_init, model
|
return model_init, model
|
||||||
|
|
||||||
def train_fast(hp):
|
def train_fast(hp, train_dl, test_dl, train_x):
|
||||||
epochs = hp['epochs']
|
epochs = hp['epochs']
|
||||||
momentum = 0.9
|
momentum = 0.9
|
||||||
weight_decay = 0.256
|
weight_decay = 0.256
|
||||||
|
@ -472,8 +541,6 @@ def train_fast(hp):
|
||||||
print("=========================")
|
print("=========================")
|
||||||
print("Training a fast model")
|
print("Training a fast model")
|
||||||
print("=========================")
|
print("=========================")
|
||||||
train_dl, test_dl, train_x = get_dataloaders_raw(hp['target_points'])
|
|
||||||
|
|
||||||
weights = fast_model.patch_whitening(train_x[:10000, :, 4:-4, 4:-4])
|
weights = fast_model.patch_whitening(train_x[:10000, :, 4:-4, 4:-4])
|
||||||
model = fast_model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
|
model = fast_model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
|
||||||
|
|
||||||
|
@ -604,12 +671,12 @@ def main():
|
||||||
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
|
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
|
||||||
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
|
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
|
||||||
parser.add_argument('--m', type=int, help='number of target points', required=True)
|
parser.add_argument('--m', type=int, help='number of target points', required=True)
|
||||||
parser.add_argument('--k', type=int, help='number of symmetric guesses', required=True)
|
|
||||||
parser.add_argument('--epochs', type=int, help='number of epochs', required=True)
|
parser.add_argument('--epochs', type=int, help='number of epochs', required=True)
|
||||||
parser.add_argument('--load', type=Path, help='number of epochs', required=False)
|
parser.add_argument('--load', type=Path, help='number of epochs', required=False)
|
||||||
parser.add_argument('--studentraw', action='store_true', help='train a raw student', required=False)
|
parser.add_argument('--studentraw', action='store_true', help='train a raw student', required=False)
|
||||||
parser.add_argument('--distill', action='store_true', help='train a raw student', required=False)
|
parser.add_argument('--distill', action='store_true', help='train a raw student', required=False)
|
||||||
parser.add_argument('--fast', action='store_true', help='train a the fast model', required=False)
|
parser.add_argument('--fast', action='store_true', help='train the fast model', required=False)
|
||||||
|
parser.add_argument('--wrn2', action='store_true', help='Train a groupnormed wrn', required=False)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
if torch.cuda.is_available() and args.cuda:
|
if torch.cuda.is_available() and args.cuda:
|
||||||
|
@ -631,8 +698,6 @@ def main():
|
||||||
"norm": args.norm,
|
"norm": args.norm,
|
||||||
"batch_size": 4096,
|
"batch_size": 4096,
|
||||||
"epochs": args.epochs,
|
"epochs": args.epochs,
|
||||||
"k+": args.k,
|
|
||||||
"k-": args.k,
|
|
||||||
"p_value": 0.05,
|
"p_value": 0.05,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -652,12 +717,16 @@ def main():
|
||||||
model_init, model_trained, adv_points, adv_labels, S = load(hp, args.load, train_dl)
|
model_init, model_trained, adv_points, adv_labels, S = load(hp, args.load, train_dl)
|
||||||
test_dl = None
|
test_dl = None
|
||||||
elif args.fast:
|
elif args.fast:
|
||||||
train_dl, test_dl, _ = get_dataloaders_raw(hp['target_points'])
|
train_dl, test_dl, train_x, adv_points, adv_labels, S = get_dataloaders_raw(hp['target_points'])
|
||||||
model_init, model_trained = train_fast(hp)
|
model_init, model_trained = train_fast(hp, train_dl, test_dl, train_x)
|
||||||
exit(1)
|
|
||||||
else:
|
else:
|
||||||
train_dl, test_dl, pure_train_dl, adv_points, adv_labels, S = get_dataloaders3(hp['target_points'], hp['batch_size'])
|
train_dl, test_dl, pure_train_dl, adv_points, adv_labels, S = get_dataloaders3(hp['target_points'], hp['batch_size'])
|
||||||
if args.studentraw:
|
if args.wrn2:
|
||||||
|
print("=========================")
|
||||||
|
print("Training wrn2 model from meta")
|
||||||
|
print("=========================")
|
||||||
|
model_init, model_trained = train_wrn2(hp, train_dl, test_dl)
|
||||||
|
elif args.studentraw:
|
||||||
print("=========================")
|
print("=========================")
|
||||||
print("Training a raw student model")
|
print("Training a raw student model")
|
||||||
print("=========================")
|
print("=========================")
|
||||||
|
@ -711,13 +780,18 @@ def main():
|
||||||
|
|
||||||
scores.append(((init_loss - trained_loss).item(), is_in))
|
scores.append(((init_loss - trained_loss).item(), is_in))
|
||||||
|
|
||||||
|
print(f"Top 10 unsorted scores: {scores[:10]}")
|
||||||
|
print(f"Btm 10 unsorted scores: {scores[-10:]}")
|
||||||
scores = sorted(scores, key=lambda x: x[0])
|
scores = sorted(scores, key=lambda x: x[0])
|
||||||
|
print(f"Top 10 sorted scores: {scores[:10]}")
|
||||||
|
print(f"Btm 10 sorted scores: {scores[-10:]}")
|
||||||
scores = np.array([x[1] for x in scores])
|
scores = np.array([x[1] for x in scores])
|
||||||
|
|
||||||
print(scores[:10])
|
|
||||||
|
|
||||||
audits = (0, 0, 0, 0)
|
audits = (0, 0, 0, 0)
|
||||||
for k in [10, 20, 50, 100, 200, 300, 500, 800, 1000, 1200, 1400, 1600, 1800, 1900, 2000, 2100, 2200, 2300, 2400, 2500]:
|
k_schedule = np.linspace(1, hp['target_points']//2, 40)
|
||||||
|
k_schedule = np.floor(k_schedule).astype(int)
|
||||||
|
|
||||||
|
for k in tqdm(k_schedule):
|
||||||
correct = np.sum(~scores[:k]) + np.sum(scores[-k:])
|
correct = np.sum(~scores[:k]) + np.sum(scores[-k:])
|
||||||
total = len(scores)
|
total = len(scores)
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue