Lira: save load shadow models
This commit is contained in:
parent
18426c7552
commit
91c61df0a8
1 changed files with 80 additions and 13 deletions
|
@ -6,6 +6,62 @@ import torchvision
|
|||
import model
|
||||
|
||||
|
||||
def load_model(model_path, device, dtype, train_data):
|
||||
weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4])
|
||||
train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
|
||||
train_model.load_state_dict(torch.load(model_path, weights_only=True))
|
||||
|
||||
# Convert model weights to half precision
|
||||
train_model.to(dtype)
|
||||
|
||||
# Convert BatchNorm back to single precision for better accuracy
|
||||
for module in train_model.modules():
|
||||
if isinstance(module, nn.BatchNorm2d):
|
||||
module.float()
|
||||
|
||||
# Upload model to GPU
|
||||
train_model.to(device)
|
||||
|
||||
return train_model
|
||||
|
||||
|
||||
def eval_model(smodel, device, dtype, data, labels, batch_size):
|
||||
smodel.eval()
|
||||
eval_correct = []
|
||||
|
||||
with torch.no_grad():
|
||||
for i in range(0, len(data), batch_size):
|
||||
regular_inputs = data[i : i + batch_size].to(device, dtype)
|
||||
flipped_inputs = torch.flip(regular_inputs, [-1])
|
||||
|
||||
logits1 = smodel(regular_inputs)
|
||||
logits2 = smodel(flipped_inputs)
|
||||
|
||||
# Final logits are average of augmented logits
|
||||
logits = torch.mean(torch.stack([logits1, logits2], dim=0), dim=0)
|
||||
|
||||
# Compute correct predictions
|
||||
correct = logits.max(dim=1)[1] == labels[i : i + batch_size].to(device)
|
||||
eval_correct.append(correct.detach().type(torch.float64))
|
||||
|
||||
# Accuracy is average number of correct predictions
|
||||
eval_acc = torch.mean(torch.cat(eval_correct)).item()
|
||||
|
||||
return eval_acc
|
||||
|
||||
|
||||
def run_shadow_model():
|
||||
batch_size = 512
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
dtype = torch.float16 if device.type != "cpu" else torch.float32
|
||||
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
|
||||
|
||||
smodel = load_model("shadow.pt", device, dtype, train_data)
|
||||
eval_acc = eval_model(smodel, device, dtype, train_data, train_targets, batch_size)
|
||||
|
||||
print(f"Evaluation Accuracy: {eval_acc:.4f}")
|
||||
|
||||
|
||||
def train(seed=0):
|
||||
# Configurable parameters
|
||||
epochs = 10
|
||||
|
@ -14,16 +70,18 @@ def train(seed=0):
|
|||
weight_decay = 0.256
|
||||
weight_decay_bias = 0.004
|
||||
ema_update_freq = 5
|
||||
ema_rho = 0.99 ** ema_update_freq
|
||||
ema_rho = 0.99**ema_update_freq
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
dtype = torch.float16 if device.type != "cpu" else torch.float32
|
||||
|
||||
# First, the learning rate rises from 0 to 0.002 for the first 194 batches.
|
||||
# Next, the learning rate shrinks down to 0.0002 over the next 582 batches.
|
||||
lr_schedule = torch.cat([
|
||||
torch.linspace(0e+0, 2e-3, 194),
|
||||
torch.linspace(2e-3, 2e-4, 582),
|
||||
])
|
||||
lr_schedule = torch.cat(
|
||||
[
|
||||
torch.linspace(0e0, 2e-3, 194),
|
||||
torch.linspace(2e-3, 2e-4, 582),
|
||||
]
|
||||
)
|
||||
|
||||
lr_schedule_bias = 64.0 * lr_schedule
|
||||
|
||||
|
@ -79,12 +137,17 @@ def train(seed=0):
|
|||
# Copy the model for validation
|
||||
valid_model = copy.deepcopy(train_model)
|
||||
|
||||
print(f"Preprocessing: {time.perf_counter() - start_time:.2f} seconds")
|
||||
|
||||
# Train and validate
|
||||
print("\nepoch batch train time [sec] validation accuracy")
|
||||
train_time = 0.0
|
||||
batch_count = 0
|
||||
|
||||
# Randomly sample half the data per model
|
||||
nb_rows = train_data.shape[0]
|
||||
indices = torch.randperm(nb_rows)[: nb_rows // 2]
|
||||
indices_in = indices[: nb_rows // 2]
|
||||
train_data = train_data[indices_in]
|
||||
train_targets = train_targets[indices_in]
|
||||
|
||||
for epoch in range(1, epochs + 1):
|
||||
# Flush CUDA pipeline for more accurate time measurement
|
||||
if torch.cuda.is_available():
|
||||
|
@ -169,8 +232,10 @@ def train(seed=0):
|
|||
|
||||
print(f"{epoch:5} {batch_count:8d} {train_time:19.2f} {valid_acc:22.4f}")
|
||||
|
||||
torch.save(train_model.state_dict(), "shadow.pt")
|
||||
return valid_acc
|
||||
|
||||
|
||||
def preprocess_data(data, device, dtype):
|
||||
# Convert to torch float16 tensor
|
||||
data = torch.tensor(data, device=device).to(dtype)
|
||||
|
@ -235,12 +300,14 @@ def random_crop(data, crop_size):
|
|||
|
||||
def sha256(path):
|
||||
import hashlib
|
||||
|
||||
with open(path, "rb") as f:
|
||||
return hashlib.sha256(f.read()).hexdigest()
|
||||
|
||||
|
||||
def getrelpath(abspath):
|
||||
import os
|
||||
|
||||
return os.path.relpath(abspath, os.getcwd())
|
||||
|
||||
|
||||
|
@ -255,24 +322,24 @@ def main():
|
|||
print_info()
|
||||
|
||||
accuracies = []
|
||||
threshold = 0.94
|
||||
for run in range(100):
|
||||
for run in range(1):
|
||||
valid_acc = train(seed=run)
|
||||
accuracies.append(valid_acc)
|
||||
|
||||
# Print accumulated results
|
||||
within_threshold = sum(acc >= threshold for acc in accuracies)
|
||||
acc = threshold * 100.0
|
||||
within_threshold = sum(acc >= 0.94 for acc in accuracies)
|
||||
acc = 0.94 * 100.0
|
||||
print()
|
||||
print(f"{within_threshold} of {run + 1} runs >= {acc} % accuracy")
|
||||
mean = sum(accuracies) / len(accuracies)
|
||||
variance = sum((acc - mean)**2 for acc in accuracies) / len(accuracies)
|
||||
variance = sum((acc - mean) ** 2 for acc in accuracies) / len(accuracies)
|
||||
std = variance**0.5
|
||||
print(f"Min accuracy: {min(accuracies)}")
|
||||
print(f"Max accuracy: {max(accuracies)}")
|
||||
print(f"Mean accuracy: {mean} +- {std}")
|
||||
print()
|
||||
|
||||
run_shadow_model()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
|
Loading…
Reference in a new issue