Lira: save load shadow models

This commit is contained in:
Akemi Izuko 2024-11-23 22:37:07 -07:00
parent 18426c7552
commit 91c61df0a8
Signed by: akemi
GPG key ID: 8DE0764E1809E9FC

View file

@ -6,6 +6,62 @@ import torchvision
import model
def load_model(model_path, device, dtype, train_data):
weights = model.patch_whitening(train_data[:10000, :, 4:-4, 4:-4])
train_model = model.Model(weights, c_in=3, c_out=10, scale_out=0.125)
train_model.load_state_dict(torch.load(model_path, weights_only=True))
# Convert model weights to half precision
train_model.to(dtype)
# Convert BatchNorm back to single precision for better accuracy
for module in train_model.modules():
if isinstance(module, nn.BatchNorm2d):
module.float()
# Upload model to GPU
train_model.to(device)
return train_model
def eval_model(smodel, device, dtype, data, labels, batch_size):
smodel.eval()
eval_correct = []
with torch.no_grad():
for i in range(0, len(data), batch_size):
regular_inputs = data[i : i + batch_size].to(device, dtype)
flipped_inputs = torch.flip(regular_inputs, [-1])
logits1 = smodel(regular_inputs)
logits2 = smodel(flipped_inputs)
# Final logits are average of augmented logits
logits = torch.mean(torch.stack([logits1, logits2], dim=0), dim=0)
# Compute correct predictions
correct = logits.max(dim=1)[1] == labels[i : i + batch_size].to(device)
eval_correct.append(correct.detach().type(torch.float64))
# Accuracy is average number of correct predictions
eval_acc = torch.mean(torch.cat(eval_correct)).item()
return eval_acc
def run_shadow_model():
batch_size = 512
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
train_data, train_targets, valid_data, valid_targets = load_cifar10(device, dtype)
smodel = load_model("shadow.pt", device, dtype, train_data)
eval_acc = eval_model(smodel, device, dtype, train_data, train_targets, batch_size)
print(f"Evaluation Accuracy: {eval_acc:.4f}")
def train(seed=0):
# Configurable parameters
epochs = 10
@ -14,16 +70,18 @@ def train(seed=0):
weight_decay = 0.256
weight_decay_bias = 0.004
ema_update_freq = 5
ema_rho = 0.99 ** ema_update_freq
ema_rho = 0.99**ema_update_freq
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dtype = torch.float16 if device.type != "cpu" else torch.float32
# First, the learning rate rises from 0 to 0.002 for the first 194 batches.
# Next, the learning rate shrinks down to 0.0002 over the next 582 batches.
lr_schedule = torch.cat([
torch.linspace(0e+0, 2e-3, 194),
torch.linspace(2e-3, 2e-4, 582),
])
lr_schedule = torch.cat(
[
torch.linspace(0e0, 2e-3, 194),
torch.linspace(2e-3, 2e-4, 582),
]
)
lr_schedule_bias = 64.0 * lr_schedule
@ -79,12 +137,17 @@ def train(seed=0):
# Copy the model for validation
valid_model = copy.deepcopy(train_model)
print(f"Preprocessing: {time.perf_counter() - start_time:.2f} seconds")
# Train and validate
print("\nepoch batch train time [sec] validation accuracy")
train_time = 0.0
batch_count = 0
# Randomly sample half the data per model
nb_rows = train_data.shape[0]
indices = torch.randperm(nb_rows)[: nb_rows // 2]
indices_in = indices[: nb_rows // 2]
train_data = train_data[indices_in]
train_targets = train_targets[indices_in]
for epoch in range(1, epochs + 1):
# Flush CUDA pipeline for more accurate time measurement
if torch.cuda.is_available():
@ -169,8 +232,10 @@ def train(seed=0):
print(f"{epoch:5} {batch_count:8d} {train_time:19.2f} {valid_acc:22.4f}")
torch.save(train_model.state_dict(), "shadow.pt")
return valid_acc
def preprocess_data(data, device, dtype):
# Convert to torch float16 tensor
data = torch.tensor(data, device=device).to(dtype)
@ -235,12 +300,14 @@ def random_crop(data, crop_size):
def sha256(path):
import hashlib
with open(path, "rb") as f:
return hashlib.sha256(f.read()).hexdigest()
def getrelpath(abspath):
import os
return os.path.relpath(abspath, os.getcwd())
@ -255,24 +322,24 @@ def main():
print_info()
accuracies = []
threshold = 0.94
for run in range(100):
for run in range(1):
valid_acc = train(seed=run)
accuracies.append(valid_acc)
# Print accumulated results
within_threshold = sum(acc >= threshold for acc in accuracies)
acc = threshold * 100.0
within_threshold = sum(acc >= 0.94 for acc in accuracies)
acc = 0.94 * 100.0
print()
print(f"{within_threshold} of {run + 1} runs >= {acc} % accuracy")
mean = sum(accuracies) / len(accuracies)
variance = sum((acc - mean)**2 for acc in accuracies) / len(accuracies)
variance = sum((acc - mean) ** 2 for acc in accuracies) / len(accuracies)
std = variance**0.5
print(f"Min accuracy: {min(accuracies)}")
print(f"Max accuracy: {max(accuracies)}")
print(f"Mean accuracy: {mean} +- {std}")
print()
run_shadow_model()
if __name__ == "__main__":
main()