Wres: args for students
This commit is contained in:
parent
5be312bf18
commit
e3ccfbcf76
1 changed files with 39 additions and 17 deletions
|
@ -1,6 +1,6 @@
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
import time
|
import time
|
||||||
|
import argparse
|
||||||
from utils import json_file_to_pyobj, get_loaders
|
from utils import json_file_to_pyobj, get_loaders
|
||||||
from WideResNet import WideResNet
|
from WideResNet import WideResNet
|
||||||
from opacus.validators import ModuleValidator
|
from opacus.validators import ModuleValidator
|
||||||
|
@ -86,6 +86,14 @@ def test(model, device, test_dl, teacher=False):
|
||||||
return accuracy
|
return accuracy
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
|
parser = argparse.ArgumentParser(description='Student trainer')
|
||||||
|
parser.add_argument('--teacher', type=Path, help='path to saved teacher .pt', required=True)
|
||||||
|
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
|
||||||
|
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
|
||||||
|
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
|
||||||
|
parser.add_argument('--epochs', type=int, help='student epochs', required=True)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
json_options = json_file_to_pyobj("wresnet16-audit-cifar10.json")
|
json_options = json_file_to_pyobj("wresnet16-audit-cifar10.json")
|
||||||
training_configurations = json_options.training
|
training_configurations = json_options.training
|
||||||
|
|
||||||
|
@ -93,7 +101,9 @@ def main():
|
||||||
wrn_width = training_configurations.wrn_width
|
wrn_width = training_configurations.wrn_width
|
||||||
dataset = training_configurations.dataset.lower()
|
dataset = training_configurations.dataset.lower()
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
if args.cuda is not None:
|
||||||
|
device = torch.device(f'cuda:{args.cuda}')
|
||||||
|
elif torch.cuda.is_available():
|
||||||
device = torch.device('cuda:0')
|
device = torch.device('cuda:0')
|
||||||
else:
|
else:
|
||||||
device = torch.device('cpu')
|
device = torch.device('cpu')
|
||||||
|
@ -109,11 +119,13 @@ def main():
|
||||||
scheduler = MultiStepLR(optimizer, milestones=[int(elem*epochs) for elem in [0.3, 0.6, 0.8]], gamma=0.2)
|
scheduler = MultiStepLR(optimizer, milestones=[int(elem*epochs) for elem in [0.3, 0.6, 0.8]], gamma=0.2)
|
||||||
train_loader, test_loader = get_loaders(dataset, training_configurations.batch_size)
|
train_loader, test_loader = get_loaders(dataset, training_configurations.batch_size)
|
||||||
best_test_set_accuracy = 0
|
best_test_set_accuracy = 0
|
||||||
dp_epsilon = 8
|
|
||||||
dp_delta = 1e-5
|
if args.epsilon is not None:
|
||||||
norm = 1.0
|
dp_epsilon = args.epsilon
|
||||||
privacy_engine = opacus.PrivacyEngine()
|
dp_delta = 1e-5
|
||||||
teacher, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
norm = args.norm
|
||||||
|
privacy_engine = opacus.PrivacyEngine()
|
||||||
|
teacher, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
|
||||||
module=teacher,
|
module=teacher,
|
||||||
optimizer=optimizer,
|
optimizer=optimizer,
|
||||||
data_loader=train_loader,
|
data_loader=train_loader,
|
||||||
|
@ -123,19 +135,28 @@ def main():
|
||||||
max_grad_norm=norm,
|
max_grad_norm=norm,
|
||||||
)
|
)
|
||||||
|
|
||||||
teacher.load_state_dict(torch.load(os.path.join("wrn-1733078278-8e-1e-05d-12.0n-dict.pt"), weights_only=True))
|
teacher.load_state_dict(torch.load(args.teacher, weights_only=True))
|
||||||
teacher.to(device)
|
teacher.to(device)
|
||||||
teacher.eval()
|
teacher.eval()
|
||||||
#instantiate istudent
|
#instantiate istudent
|
||||||
student = student_model.Model(num_classes=10).to(device)
|
student = student_model.Model(num_classes=10).to(device)
|
||||||
|
|
||||||
|
|
||||||
print("Training student")
|
print("Training student")
|
||||||
train_knowledge_distillation(teacher=teacher, student=student, train_dl=train_loader, epochs=100, learning_rate=0.001, T=2, soft_target_loss_weight=0.25, ce_loss_weight=0.75, device=device)
|
train_knowledge_distillation(
|
||||||
print("Saving student")
|
teacher=teacher,
|
||||||
current_datetime = datetime.now()
|
student=student,
|
||||||
filename = f"students/studentmodel{current_datetime.strftime('%Y%m%d_%H%M%S')}.pt"
|
train_dl=train_loader,
|
||||||
torch.save(student.state_dict(), filename)
|
epochs=args.epochs,
|
||||||
|
learning_rate=0.001,
|
||||||
|
T=2,
|
||||||
|
soft_target_loss_weight=0.25,
|
||||||
|
ce_loss_weight=0.75,
|
||||||
|
device=device
|
||||||
|
)
|
||||||
|
print(f"Saving student model for time {int(time.time())}")
|
||||||
|
Path('students').mkdir(exist_ok=True)
|
||||||
|
torch.save(student.state_dict(), f"students/studentmodel-{int(time.time())}.pt")
|
||||||
|
|
||||||
print("Testing student and teacher")
|
print("Testing student and teacher")
|
||||||
test_student = test(student, device, test_loader,)
|
test_student = test(student, device, test_loader,)
|
||||||
test_teacher = test(teacher, device, test_loader, True)
|
test_teacher = test(teacher, device, test_loader, True)
|
||||||
|
@ -144,4 +165,5 @@ def main():
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
||||||
main()
|
main()
|
||||||
|
|
Loading…
Reference in a new issue