Pytorch version of lira

This commit is contained in:
Akemi Izuko 2024-11-29 17:16:09 -07:00
parent 3467c25882
commit e95444fa74
Signed by: akemi
GPG key ID: 8DE0764E1809E9FC
12 changed files with 912 additions and 0 deletions

7
lira-pytorch/.gitignore vendored Normal file
View file

@ -0,0 +1,7 @@
__pycache__
exp
logs
slurm
gpu.sh
*.out

202
lira-pytorch/LICENSE Normal file
View file

@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

42
lira-pytorch/README.md Normal file
View file

@ -0,0 +1,42 @@
# Likelihood Ration Attack (LiRA) in PyTorch
Implementation of the original [LiRA](https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021) using PyTorch. To run the code, first create an environment with the `env.yml` file. Then run the following command to train the models and run the LiRA attack:
```
./run.sh
```
The output will generate and store a log-scale FPR-TPR curve as `./fprtpr.png` with the TPR@0.1%FPR in the output log.
## Results on CIFAR10
Using 16 shadow models trained with `ResNet18 and 2 augmented queries`:
![roc](figures/fprtpr_resnet18.png)
```
Attack Ours (online)
AUC 0.6548, Accuracy 0.6015, TPR@0.1%FPR of 0.0068
Attack Ours (online, fixed variance)
AUC 0.6700, Accuracy 0.6042, TPR@0.1%FPR of 0.0464
Attack Ours (offline)
AUC 0.5250, Accuracy 0.5353, TPR@0.1%FPR of 0.0041
Attack Ours (offline, fixed variance)
AUC 0.5270, Accuracy 0.5380, TPR@0.1%FPR of 0.0192
Attack Global threshold
AUC 0.5948, Accuracy 0.5869, TPR@0.1%FPR of 0.0006
```
Using 16 shadow models trained with `WideResNet28-10 and 2 augmented queries`:
![roc](figures/fprtpr_wideresnet.png)
```
Attack Ours (online)
AUC 0.6834, Accuracy 0.6152, TPR@0.1%FPR of 0.0240
Attack Ours (online, fixed variance)
AUC 0.7017, Accuracy 0.6240, TPR@0.1%FPR of 0.0704
Attack Ours (offline)
AUC 0.5621, Accuracy 0.5649, TPR@0.1%FPR of 0.0140
Attack Ours (offline, fixed variance)
AUC 0.5698, Accuracy 0.5628, TPR@0.1%FPR of 0.0370
Attack Global threshold
AUC 0.6016, Accuracy 0.5977, TPR@0.1%FPR of 0.0013
```

35
lira-pytorch/env.yml Normal file
View file

@ -0,0 +1,35 @@
# Minimal environment for starting a project using conda/mamba:
# conda env create -n ENVNAME --file ENV.yml
name: template
channels:
- pytorch
- nvidia
- conda-forge
- defaults
dependencies:
- python=3.8.6
- pip
- pytest
- numpy
- scipy
- scikit-learn
- matplotlib
- pandas
- tqdm
- wandb
- jupyterlab
- jupyter
- ipykernel
- pytorch
- torchvision
- torchaudio
- pytorch-cuda=12.1
- tqdm
- pytorch-lightning
- lightning-bolts
- torchmetrics
# Install packages with pip
# - pip:
# - ray[tune]

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

75
lira-pytorch/inference.py Normal file
View file

@ -0,0 +1,75 @@
# PyTorch implementation of
# https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/inference.py
#
# author: Chenxiang Zhang (orientino)
import argparse
import os
from pathlib import Path
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import CIFAR10
from tqdm import tqdm
from wide_resnet import WideResNet
parser = argparse.ArgumentParser()
parser.add_argument("--n_queries", default=2, type=int)
parser.add_argument("--model", default="resnet18", type=str)
parser.add_argument("--savedir", default="exp/cifar10", type=str)
args = parser.parse_args()
@torch.no_grad()
def run():
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mps")
# Dataset
transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2470, 0.2435, 0.2616]),
]
)
datadir = Path().home() / "opt/data/cifar"
train_ds = CIFAR10(root=datadir, train=True, download=True, transform=transform)
train_dl = DataLoader(train_ds, batch_size=128, shuffle=False, num_workers=4)
# Infer the logits with multiple queries
for path in os.listdir(args.savedir):
if args.model == "wresnet28-2":
m = WideResNet(28, 2, 0.0, 10)
elif args.model == "wresnet28-10":
m = WideResNet(28, 10, 0.3, 10)
elif args.model == "resnet18":
m = models.resnet18(weights=None, num_classes=10)
m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
m.maxpool = nn.Identity()
else:
raise NotImplementedError
m.load_state_dict(torch.load(os.path.join(args.savedir, path, "model.pt")))
m.to(DEVICE)
m.eval()
logits_n = []
for i in range(args.n_queries):
logits = []
for x, _ in tqdm(train_dl):
x = x.to(DEVICE)
outputs = m(x)
logits.append(outputs.cpu().numpy())
logits_n.append(np.concatenate(logits))
logits_n = np.stack(logits_n, axis=1)
print(logits_n.shape)
np.save(os.path.join(args.savedir, path, "logits.npy"), logits_n)
if __name__ == "__main__":
run()

205
lira-pytorch/plot.py Normal file
View file

@ -0,0 +1,205 @@
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified copy by Chenxiang Zhang (orientino) of the original:
# https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021
import argparse
import functools
import os
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats
from sklearn.metrics import auc, roc_curve
matplotlib.rcParams["pdf.fonttype"] = 42
matplotlib.rcParams["ps.fonttype"] = 42
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", default="exp/cifar10", type=str)
args = parser.parse_args()
def sweep(score, x):
"""
Compute a ROC curve and then return the FPR, TPR, AUC, and ACC.
"""
fpr, tpr, _ = roc_curve(x, -score)
acc = np.max(1 - (fpr + (1 - tpr)) / 2)
return fpr, tpr, auc(fpr, tpr), acc
def load_data():
"""
Load our saved scores and then put them into a big matrix.
"""
global scores, keep
scores = []
keep = []
for path in os.listdir(args.savedir):
scores.append(np.load(os.path.join(args.savedir, path, "scores.npy")))
keep.append(np.load(os.path.join(args.savedir, path, "keep.npy")))
scores = np.array(scores)
keep = np.array(keep)
return scores, keep
def generate_ours(keep, scores, check_keep, check_scores, in_size=100000, out_size=100000, fix_variance=False):
"""
Fit a two predictive models using keep and scores in order to predict
if the examples in check_scores were training data or not, using the
ground truth answer from check_keep.
"""
dat_in = []
dat_out = []
for j in range(scores.shape[1]):
dat_in.append(scores[keep[:, j], j, :])
dat_out.append(scores[~keep[:, j], j, :])
in_size = min(min(map(len, dat_in)), in_size)
out_size = min(min(map(len, dat_out)), out_size)
dat_in = np.array([x[:in_size] for x in dat_in])
dat_out = np.array([x[:out_size] for x in dat_out])
mean_in = np.median(dat_in, 1)
mean_out = np.median(dat_out, 1)
if fix_variance:
std_in = np.std(dat_in)
std_out = np.std(dat_in)
else:
std_in = np.std(dat_in, 1)
std_out = np.std(dat_out, 1)
prediction = []
answers = []
for ans, sc in zip(check_keep, check_scores):
pr_in = -scipy.stats.norm.logpdf(sc, mean_in, std_in + 1e-30)
pr_out = -scipy.stats.norm.logpdf(sc, mean_out, std_out + 1e-30)
score = pr_in - pr_out
prediction.extend(score.mean(1))
answers.extend(ans)
return prediction, answers
def generate_ours_offline(keep, scores, check_keep, check_scores, in_size=100000, out_size=100000, fix_variance=False):
"""
Fit a single predictive model using keep and scores in order to predict
if the examples in check_scores were training data or not, using the
ground truth answer from check_keep.
"""
dat_in = []
dat_out = []
for j in range(scores.shape[1]):
dat_in.append(scores[keep[:, j], j, :])
dat_out.append(scores[~keep[:, j], j, :])
out_size = min(min(map(len, dat_out)), out_size)
dat_out = np.array([x[:out_size] for x in dat_out])
mean_out = np.median(dat_out, 1)
if fix_variance:
std_out = np.std(dat_out)
else:
std_out = np.std(dat_out, 1)
prediction = []
answers = []
for ans, sc in zip(check_keep, check_scores):
score = scipy.stats.norm.logpdf(sc, mean_out, std_out + 1e-30)
prediction.extend(score.mean(1))
answers.extend(ans)
return prediction, answers
def generate_global(keep, scores, check_keep, check_scores):
"""
Use a simple global threshold sweep to predict if the examples in
check_scores were training data or not, using the ground truth answer from
check_keep.
"""
prediction = []
answers = []
for ans, sc in zip(check_keep, check_scores):
prediction.extend(-sc.mean(1))
answers.extend(ans)
return prediction, answers
def do_plot(fn, keep, scores, ntest, legend="", metric="auc", sweep_fn=sweep, **plot_kwargs):
"""
Generate the ROC curves by using ntest models as test models and the rest to train.
"""
prediction, answers = fn(keep[:-ntest], scores[:-ntest], keep[-ntest:], scores[-ntest:])
fpr, tpr, auc, acc = sweep_fn(np.array(prediction), np.array(answers, dtype=bool))
low = tpr[np.where(fpr < 0.001)[0][-1]]
print("Attack %s AUC %.4f, Accuracy %.4f, TPR@0.1%%FPR of %.4f" % (legend, auc, acc, low))
metric_text = ""
if metric == "auc":
metric_text = "auc=%.3f" % auc
elif metric == "acc":
metric_text = "acc=%.3f" % acc
plt.plot(fpr, tpr, label=legend + metric_text, **plot_kwargs)
return (acc, auc)
def fig_fpr_tpr():
plt.figure(figsize=(4, 3))
do_plot(generate_ours, keep, scores, 1, "Ours (online)\n", metric="auc")
do_plot(functools.partial(generate_ours, fix_variance=True), keep, scores, 1, "Ours (online, fixed variance)\n", metric="auc")
do_plot(functools.partial(generate_ours_offline), keep, scores, 1, "Ours (offline)\n", metric="auc")
do_plot(functools.partial(generate_ours_offline, fix_variance=True), keep, scores, 1, "Ours (offline, fixed variance)\n", metric="auc")
do_plot(generate_global, keep, scores, 1, "Global threshold\n", metric="auc")
plt.semilogx()
plt.semilogy()
plt.xlim(1e-5, 1)
plt.ylim(1e-5, 1)
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
plt.plot([0, 1], [0, 1], ls="--", color="gray")
plt.subplots_adjust(bottom=0.18, left=0.18, top=0.96, right=0.96)
plt.legend(fontsize=8)
plt.savefig("fprtpr.png")
plt.show()
if __name__ == "__main__":
load_data()
fig_fpr_tpr()

21
lira-pytorch/run.sh Executable file
View file

@ -0,0 +1,21 @@
python3 train.py --epochs 100 --shadow_id 0 --debug
python3 train.py --epochs 100 --shadow_id 1 --debug
python3 train.py --epochs 100 --shadow_id 2 --debug
python3 train.py --epochs 100 --shadow_id 3 --debug
python3 train.py --epochs 100 --shadow_id 4 --debug
python3 train.py --epochs 100 --shadow_id 5 --debug
python3 train.py --epochs 100 --shadow_id 6 --debug
python3 train.py --epochs 100 --shadow_id 7 --debug
python3 train.py --epochs 100 --shadow_id 8 --debug
python3 train.py --epochs 100 --shadow_id 9 --debug
python3 train.py --epochs 100 --shadow_id 10 --debug
python3 train.py --epochs 100 --shadow_id 11 --debug
python3 train.py --epochs 100 --shadow_id 12 --debug
python3 train.py --epochs 100 --shadow_id 13 --debug
python3 train.py --epochs 100 --shadow_id 14 --debug
python3 train.py --epochs 100 --shadow_id 15 --debug
python3 inference.py --savedir exp/cifar10
python3 score.py --savedir exp/cifar10
python3 plot.py --savedir exp/cifar10

70
lira-pytorch/score.py Normal file
View file

@ -0,0 +1,70 @@
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Modified copy by Chenxiang Zhang (orientino) of the original:
# https://github.com/tensorflow/privacy/tree/master/research/mi_lira_2021
import argparse
import multiprocessing as mp
import os
from pathlib import Path
import numpy as np
from torchvision.datasets import CIFAR10
parser = argparse.ArgumentParser()
parser.add_argument("--savedir", default="exp/cifar10", type=str)
args = parser.parse_args()
def load_one(path):
"""
This loads a logits and converts it to a scored prediction.
"""
opredictions = np.load(os.path.join(path, "logits.npy")) # [n_examples, n_augs, n_classes]
# Be exceptionally careful.
# Numerically stable everything, as described in the paper.
predictions = opredictions - np.max(opredictions, axis=-1, keepdims=True)
predictions = np.array(np.exp(predictions), dtype=np.float64)
predictions = predictions / np.sum(predictions, axis=-1, keepdims=True)
labels = get_labels() # TODO generalize this
COUNT = predictions.shape[0]
y_true = predictions[np.arange(COUNT), :, labels[:COUNT]]
print("mean acc", np.mean(predictions[:, 0, :].argmax(1) == labels[:COUNT]))
predictions[np.arange(COUNT), :, labels[:COUNT]] = 0
y_wrong = np.sum(predictions, axis=-1)
logit = np.log(y_true + 1e-45) - np.log(y_wrong + 1e-45)
np.save(os.path.join(path, "scores.npy"), logit)
def get_labels():
datadir = Path().home() / "opt/data/cifar"
train_ds = CIFAR10(root=datadir, train=True, download=True)
return np.array(train_ds.targets)
def load_stats():
with mp.Pool(8) as p:
p.map(load_one, [os.path.join(args.savedir, x) for x in os.listdir(args.savedir)])
if __name__ == "__main__":
load_stats()

180
lira-pytorch/train.py Normal file
View file

@ -0,0 +1,180 @@
# PyTorch implementation of
# https://github.com/tensorflow/privacy/blob/master/research/mi_lira_2021/train.py
#
# author: Chenxiang Zhang (orientino)
import argparse
import os
import time
from pathlib import Path
import numpy as np
import pytorch_lightning as pl
import torch
import wandb
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import models, transforms
from torchvision.datasets import CIFAR10
from tqdm import tqdm
from opacus.validators import ModuleValidator
from opacus import PrivacyEngine
from opacus.utils.batch_memory_manager import BatchMemoryManager
from wide_resnet import WideResNet
parser = argparse.ArgumentParser()
parser.add_argument("--lr", default=0.1, type=float)
parser.add_argument("--epochs", default=1, type=int)
parser.add_argument("--n_shadows", default=16, type=int)
parser.add_argument("--shadow_id", default=1, type=int)
parser.add_argument("--model", default="resnet18", type=str)
parser.add_argument("--pkeep", default=0.5, type=float)
parser.add_argument("--savedir", default="exp/cifar10", type=str)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("mps")
EPOCHS = args.epochs
def run():
seed = np.random.randint(0, 1000000000)
seed ^= int(time.time())
pl.seed_everything(seed)
args.debug = True
wandb.init(project="lira", mode="disabled" if args.debug else "online")
wandb.config.update(args)
# Dataset
train_transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.RandomCrop(32, padding=4),
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2470, 0.2435, 0.2616]),
]
)
test_transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.4914, 0.4822, 0.4465], [0.2470, 0.2435, 0.2616]),
]
)
datadir = Path().home() / "opt/data/cifar"
train_ds = CIFAR10(root=datadir, train=True, download=True, transform=train_transform)
test_ds = CIFAR10(root=datadir, train=False, download=True, transform=test_transform)
# Compute the IN / OUT subset:
# If we run each experiment independently then even after a lot of trials
# there will still probably be some examples that were always included
# or always excluded. So instead, with experiment IDs, we guarantee that
# after `args.n_shadows` are done, each example is seen exactly half
# of the time in train, and half of the time not in train.
size = len(train_ds)
np.random.seed(seed)
if args.n_shadows is not None:
np.random.seed(0)
keep = np.random.uniform(0, 1, size=(args.n_shadows, size))
order = keep.argsort(0)
keep = order < int(args.pkeep * args.n_shadows)
keep = np.array(keep[args.shadow_id], dtype=bool)
keep = keep.nonzero()[0]
else:
keep = np.random.choice(size, size=int(args.pkeep * size), replace=False)
keep.sort()
keep_bool = np.full((size), False)
keep_bool[keep] = True
train_ds = torch.utils.data.Subset(train_ds, keep)
train_dl = DataLoader(train_ds, batch_size=128, shuffle=True, num_workers=4)
test_dl = DataLoader(test_ds, batch_size=128, shuffle=False, num_workers=4)
# Model
if args.model == "wresnet28-2":
m = WideResNet(28, 2, 0.0, 10)
print("one")
elif args.model == "wresnet28-10":
m = WideResNet(28, 10, 0.3, 10)
print("two")
elif args.model == "resnet18":
print("three")
m = models.resnet18(weights=None, num_classes=10)
m.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
m.maxpool = nn.Identity()
else:
raise NotImplementedError
m = m.to(DEVICE)
m = ModuleValidator.fix(m)
ModuleValidator.validate(m, strict=True)
optim = torch.optim.SGD(m.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
sched = torch.optim.lr_scheduler.CosineAnnealingLR(optim, T_max=args.epochs)
privacy_engine = PrivacyEngine(accountant='rdp', secure_mod=True)
m, optim, train_dl = privacy_engine.make_private_with_epsilon(
module=m,
optimizer=optim,
data_loader=train_dl,
epochs=args.epochs,
target_epsilon=1,
target_delta=1e-4,
max_grad_norm=1.0,
)
print(f"Device: {DEVICE}")
# Train
# max_physical_batch_size=MAX_PHYSICAL_BATCH_SIZE,
with BatchMemoryManager(
data_loader=train_dl,
max_physical_batch_size=1000,
optimizer=optim
) as memory_safe_data_loader:
for i in tqdm(range(args.epochs)):
m.train()
loss_total = 0
pbar = tqdm(memory_safe_data_loader, leave=False)
#pbar = tqdm(train_dl, leave=False)
for itr, (x, y) in enumerate(pbar):
x, y = x.to(DEVICE), y.to(DEVICE)
loss = F.cross_entropy(m(x), y)
loss_total += loss
pbar.set_postfix_str(f"loss: {loss:.2f}")
optim.zero_grad()
loss.backward()
optim.step()
sched.step()
wandb.log({"loss": loss_total / len(train_dl)})
print(f"[test] acc_test: {get_acc(m, test_dl):.4f}")
wandb.log({"acc_test": get_acc(m, test_dl)})
savedir = os.path.join(args.savedir, str(args.shadow_id))
os.makedirs(savedir, exist_ok=True)
np.save(savedir + "/keep.npy", keep_bool)
torch.save(m.state_dict(), savedir + "/model.pt")
@torch.no_grad()
def get_acc(model, dl):
acc = []
for x, y in dl:
x, y = x.to(DEVICE), y.to(DEVICE)
acc.append(torch.argmax(model(x), dim=1) == y)
acc = torch.cat(acc)
acc = torch.sum(acc) / len(acc)
return acc.item()
if __name__ == "__main__":
run()

View file

@ -0,0 +1,75 @@
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
class wide_basic(nn.Module):
def __init__(self, in_planes, planes, dropout_rate, stride=1):
super(wide_basic, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1)
self.bn2 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1)
self.dropout = nn.Dropout(p=dropout_rate)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride),
)
def forward(self, x):
out = self.conv1(F.relu(self.bn1(x)))
out = self.dropout(out)
out = self.conv2(F.relu(self.bn2(out)))
out += self.shortcut(x)
return out
class WideResNet(nn.Module):
def __init__(self, depth, widen_factor, dropout_rate, n_classes):
super(WideResNet, self).__init__()
self.in_planes = 16
assert (depth - 4) % 6 == 0, "Wide-ResNet depth should be 6n+4"
n = (depth - 4) // 6
k = widen_factor
stages = [16, 16 * k, 32 * k, 64 * k]
self.conv1 = nn.Conv2d(3, stages[0], kernel_size=3, stride=1, padding=1)
self.layer1 = self._wide_layer(wide_basic, stages[1], n, dropout_rate, stride=1)
self.layer2 = self._wide_layer(wide_basic, stages[2], n, dropout_rate, stride=2)
self.layer3 = self._wide_layer(wide_basic, stages[3], n, dropout_rate, stride=2)
self.bn1 = nn.BatchNorm2d(stages[3], momentum=0.9)
self.linear = nn.Linear(stages[3], n_classes)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
elif isinstance(m, nn.Linear):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
nn.init.constant_(m.bias, 0)
def _wide_layer(self, block, planes, n_blocks, dropout_rate, stride):
strides = [stride] + [1] * (int(n_blocks) - 1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, dropout_rate, stride))
self.in_planes = planes
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv1(x)
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = F.relu(self.bn1(out))
out = F.avg_pool2d(out, 8)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out