O1: add wrn2 architecture

This commit is contained in:
Akemi Izuko 2024-12-07 14:00:39 -07:00
parent 5da8c44743
commit f407827ac1
Signed by: akemi
GPG key ID: 8DE0764E1809E9FC

232
one_run_audit/wrn.py Normal file
View file

@ -0,0 +1,232 @@
"""
Adapted from:
https://github.com/facebookresearch/tan/blob/main/src/models/wideresnet.py
"""
#!/usr/bin/env python3
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD-style license found in the
# LICENSE file in the root directory of this source tree.
"""
Adapted from timm:
https://github.com/xternalz/WideResNet-pytorch/blob/master/wideresnet.py
"""
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
class L2Norm(nn.Module):
def forward(self, x):
return x / x.norm(p=2, dim=1, keepdim=True)
class BasicBlock(nn.Module):
def __init__(self, in_planes, out_planes, stride, nb_groups, order):
super(BasicBlock, self).__init__()
self.order = order
self.bn1 = nn.GroupNorm(nb_groups, in_planes) if nb_groups else nn.Identity()
self.relu1 = nn.ReLU()
self.conv1 = nn.Conv2d(
in_planes, out_planes, kernel_size=3, stride=stride, padding=1
)
self.bn2 = nn.GroupNorm(nb_groups, out_planes) if nb_groups else nn.Identity()
self.relu2 = nn.ReLU()
self.conv2 = nn.Conv2d(
out_planes, out_planes, kernel_size=3, stride=1, padding=1
)
self.equalInOut = in_planes == out_planes
self.bnShortcut = (
(not self.equalInOut)
and nb_groups
and nn.GroupNorm(nb_groups, in_planes)
or (not self.equalInOut)
and nn.Identity()
or None
)
self.convShortcut = (
(not self.equalInOut)
and nn.Conv2d(
in_planes, out_planes, kernel_size=1, stride=stride, padding=0
)
) or None
def forward(self, x):
skip = x
assert self.order in [0, 1, 2, 3]
if self.order == 0: # DM accuracy good
if not self.equalInOut:
skip = self.convShortcut(self.bnShortcut(self.relu1(x)))
out = self.conv1(self.bn1(self.relu1(x)))
out = self.conv2(self.bn2(self.relu2(out)))
elif self.order == 1: # classic accuracy bad
if not self.equalInOut:
skip = self.convShortcut(self.relu1(self.bnShortcut(x)))
out = self.conv1(self.relu1(self.bn1(x)))
out = self.conv2(self.relu2(self.bn2(out)))
elif self.order == 2: # DM IN RESIDUAL, normal other
if not self.equalInOut:
skip = self.convShortcut(self.bnShortcut(self.relu1(x)))
out = self.conv1(self.relu1(self.bn1(x)))
out = self.conv2(self.relu2(self.bn2(out)))
elif self.order == 3: # normal in residualm DM in others
if not self.equalInOut:
skip = self.convShortcut(self.relu1(self.bnShortcut(x)))
out = self.conv1(self.bn1(self.relu1(x)))
out = self.conv2(self.bn2(self.relu2(out)))
return torch.add(skip, out)
class NetworkBlock(nn.Module):
def __init__(
self, nb_layers, in_planes, out_planes, block, stride, nb_groups, order
):
super(NetworkBlock, self).__init__()
self.layer = self._make_layer(
block, in_planes, out_planes, nb_layers, stride, nb_groups, order
)
def _make_layer(
self, block, in_planes, out_planes, nb_layers, stride, nb_groups, order
):
layers = []
for i in range(int(nb_layers)):
layers.append(
block(
i == 0 and in_planes or out_planes,
out_planes,
i == 0 and stride or 1,
nb_groups,
order,
)
)
return nn.Sequential(*layers)
def forward(self, x):
return self.layer(x)
class WideResNet(nn.Module):
def __init__(
self,
depth,
feat_dim,
#num_classes,
widen_factor=1,
nb_groups=16,
init=0,
order1=0,
order2=0,
):
if order1 == 0:
print("order1=0: In the blocks: like in DM, BN on top of relu")
if order1 == 1:
print("order1=1: In the blocks: not like in DM, relu on top of BN")
if order1 == 2:
print(
"order1=2: In the blocks: BN on top of relu in residual (DM), relu on top of BN ortherplace (clqssique)"
)
if order1 == 3:
print(
"order1=3: In the blocks: relu on top of BN in residual (classic), BN on top of relu otherplace (DM)"
)
if order2 == 0:
print("order2=0: outside the blocks: like in DM, BN on top of relu")
if order2 == 1:
print("order2=1: outside the blocks: not like in DM, relu on top of BN")
super(WideResNet, self).__init__()
nChannels = [16, 16 * widen_factor, 32 * widen_factor, 64 * widen_factor]
assert (depth - 4) % 6 == 0
n = (depth - 4) / 6
block = BasicBlock
# 1st conv before any network block
self.conv1 = nn.Conv2d(3, nChannels[0], kernel_size=3, stride=1, padding=1)
# 1st block
self.block1 = NetworkBlock(
n, nChannels[0], nChannels[1], block, 1, nb_groups, order1
)
# 2nd block
self.block2 = NetworkBlock(
n, nChannels[1], nChannels[2], block, 2, nb_groups, order1
)
# 3rd block
self.block3 = NetworkBlock(
n, nChannels[2], nChannels[3], block, 2, nb_groups, order1
)
# global average pooling and classifier
"""
self.bn1 = nn.GroupNorm(nb_groups, nChannels[3]) if nb_groups else nn.Identity()
self.relu = nn.ReLU()
self.fc = nn.Linear(nChannels[3], num_classes)
"""
self.nChannels = nChannels[3]
self.block4 = nn.Sequential(
nn.Flatten(),
nn.Linear(256 * 8 * 8, 4096, bias=False), # 256 * 6 * 6 if 224 * 224
nn.GroupNorm(16, 4096),
nn.ReLU(inplace=True),
)
# fc7
self.block5 = nn.Sequential(
nn.Linear(4096, 4096, bias=False),
nn.GroupNorm(16, 4096),
nn.ReLU(inplace=True),
)
# fc8
self.block6 =nn.Sequential(
nn.Linear(4096, feat_dim),
L2Norm(),
)
if init == 0: # as in Deep Mind's paper
for m in self.modules():
if isinstance(m, nn.Conv2d):
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(m.weight)
s = 1 / (max(fan_in, 1)) ** 0.5
nn.init.trunc_normal_(m.weight, std=s)
m.bias.data.zero_()
elif isinstance(m, nn.GroupNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
fan_in, fan_out = nn.init._calculate_fan_in_and_fan_out(m.weight)
s = 1 / (max(fan_in, 1)) ** 0.5
nn.init.trunc_normal_(m.weight, std=s)
#m.bias.data.zero_()
if init == 1: # old version
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode="fan_out", nonlinearity="relu"
)
elif isinstance(m, nn.GroupNorm):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
m.bias.data.zero_()
self.order2 = order2
def forward(self, x):
out = self.conv1(x)
out = self.block1(out)
out = self.block2(out)
out = self.block3(out)
out = self.block4(out)
out = self.block5(out)
out = self.block6(out)
if out.ndim == 4:
out = out.mean(dim=-1)
if out.ndim == 3:
out = out.mean(dim=-1)
#out = self.bn1(self.relu(out)) if self.order2 == 0 else self.relu(self.bn1(out))
#out = F.avg_pool2d(out, 8)
#out = out.view(-1, self.nChannels)
return out#self.fc(out)