import numpy as np import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init class wide_basic(nn.Module): def __init__(self, in_planes, planes, dropout_rate, stride=1): super(wide_basic, self).__init__() self.bn1 = nn.BatchNorm2d(in_planes) self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1) self.bn2 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1) self.dropout = nn.Dropout(p=dropout_rate) self.shortcut = nn.Sequential() if stride != 1 or in_planes != planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), ) def forward(self, x): out = self.conv1(F.relu(self.bn1(x))) out = self.dropout(out) out = self.conv2(F.relu(self.bn2(out))) out += self.shortcut(x) return out class WideResNet(nn.Module): def __init__(self, depth, widen_factor, dropout_rate, n_classes): super(WideResNet, self).__init__() self.in_planes = 16 assert (depth - 4) % 6 == 0, "Wide-ResNet depth should be 6n+4" n = (depth - 4) // 6 k = widen_factor stages = [16, 16 * k, 32 * k, 64 * k] self.conv1 = nn.Conv2d(3, stages[0], kernel_size=3, stride=1, padding=1) self.layer1 = self._wide_layer(wide_basic, stages[1], n, dropout_rate, stride=1) self.layer2 = self._wide_layer(wide_basic, stages[2], n, dropout_rate, stride=2) self.layer3 = self._wide_layer(wide_basic, stages[3], n, dropout_rate, stride=2) self.bn1 = nn.BatchNorm2d(stages[3], momentum=0.9) self.linear = nn.Linear(stages[3], n_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") elif isinstance(m, nn.Linear): nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu") nn.init.constant_(m.bias, 0) def _wide_layer(self, block, planes, n_blocks, dropout_rate, stride): strides = [stride] + [1] * (int(n_blocks) - 1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, dropout_rate, stride)) self.in_planes = planes return nn.Sequential(*layers) def forward(self, x): out = self.conv1(x) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = F.relu(self.bn1(out)) out = F.avg_pool2d(out, 8) out = out.view(out.size(0), -1) out = self.linear(out) return out