# These equations come from: # [1] T. Steinke, M. Nasr, and M. Jagielski, “Privacy Auditing with One (1) # Training Run,” May 15, 2023, arXiv: arXiv:2305.08846. Accessed: Sep. 15, 2024. # [Online]. Available: http://arxiv.org/abs/2305.08846 import math import scipy.stats # m = number of examples, each included independently with probability 0.5 # r = number of guesses (i.e. excluding abstentions) # v = number of correct guesses by auditor # eps,delta = DP guarantee of null hypothesis # output: p-value = probability of >=v correct guesses under null hypothesis def p_value_DP_audit(m, r, v, eps, delta): assert 0 <= v <= r <= m assert eps >= 0 assert 0 <= delta <= 1 q = 1 / (1 + math.exp(-eps)) # accuracy of eps-DP randomized response beta = scipy.stats.binom.sf(v - 1, r, q) # = P[Binomial(r, q) >= v] alpha = 0 sum = 0 # = P[v > Binomial(r, q) >= v - i] for i in range(1, v + 1): sum = sum + scipy.stats.binom.pmf(v - i, r, q) if sum > i * alpha: alpha = sum / i p = beta + alpha * delta * 2 * m return min(p, 1) # m = number of examples, each included independently with probability 0.5 # r = number of guesses (i.e. excluding abstentions) # v = number of correct guesses by auditor # p = 1-confidence e.g. p=0.05 corresponds to 95% # output: lower bound on eps i.e. algorithm is not (eps,delta)-DP def get_eps_audit(m, r, v, delta, p): assert 0 <= v <= r <= m assert 0 <= delta <= 1 assert 0 < p < 1 eps_min = 0 # maintain p_value_DP(eps_min) < p eps_max = 1 # maintain p_value_DP(eps_max) >= p while p_value_DP_audit(m, r, v, eps_max, delta) < p: eps_max = eps_max + 1 for _ in range(30): # binary search eps = (eps_min + eps_max) / 2 if p_value_DP_audit(m, r, v, eps, delta) < p: eps_min = eps else: eps_max = eps return eps_min if __name__ == '__main__': x = 100 print(f"For m=100 r=100 v=100 p=0.05: {get_eps_audit(x, x, x, 1e-5, 0.05)}")