mia_on_model_distillation/one_run_audit/fast_model.py

141 lines
4.8 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
def label_smoothing_loss(inputs, targets, alpha):
log_probs = torch.nn.functional.log_softmax(inputs, dim=1, _stacklevel=5)
kl = -log_probs.mean(dim=1)
xent = torch.nn.functional.nll_loss(log_probs, targets, reduction="none")
loss = (1 - alpha) * xent + alpha * kl
return loss
class GhostBatchNorm(nn.BatchNorm2d):
def __init__(self, num_features, num_splits, **kw):
super().__init__(num_features, **kw)
running_mean = torch.zeros(num_features * num_splits)
running_var = torch.ones(num_features * num_splits)
self.weight.requires_grad = False
self.num_splits = num_splits
self.register_buffer("running_mean", running_mean)
self.register_buffer("running_var", running_var)
def train(self, mode=True):
if (self.training is True) and (mode is False):
# lazily collate stats when we are going to use them
self.running_mean = torch.mean(
self.running_mean.view(self.num_splits, self.num_features), dim=0
).repeat(self.num_splits)
self.running_var = torch.mean(
self.running_var.view(self.num_splits, self.num_features), dim=0
).repeat(self.num_splits)
return super().train(mode)
def forward(self, input):
n, c, h, w = input.shape
if self.training or not self.track_running_stats:
assert n % self.num_splits == 0, f"Batch size ({n}) must be divisible by num_splits ({self.num_splits}) of GhostBatchNorm"
return F.batch_norm(
input.view(-1, c * self.num_splits, h, w),
self.running_mean,
self.running_var,
self.weight.repeat(self.num_splits),
self.bias.repeat(self.num_splits),
True,
self.momentum,
self.eps,
).view(n, c, h, w)
else:
return F.batch_norm(
input,
self.running_mean[: self.num_features],
self.running_var[: self.num_features],
self.weight,
self.bias,
False,
self.momentum,
self.eps,
)
def conv_bn_relu(c_in, c_out, kernel_size=(3, 3), padding=(1, 1)):
return nn.Sequential(
nn.Conv2d(c_in, c_out, kernel_size=kernel_size, padding=padding, bias=False),
GhostBatchNorm(c_out, num_splits=16),
nn.CELU(alpha=0.3),
)
def conv_pool_norm_act(c_in, c_out):
return nn.Sequential(
nn.Conv2d(c_in, c_out, kernel_size=(3, 3), padding=(1, 1), bias=False),
nn.MaxPool2d(kernel_size=2, stride=2),
GhostBatchNorm(c_out, num_splits=16),
nn.CELU(alpha=0.3),
)
def patch_whitening(data, patch_size=(3, 3)):
# Compute weights from data such that
# torch.std(F.conv2d(data, weights), dim=(2, 3))
# is close to 1.
h, w = patch_size
c = data.size(1)
patches = data.unfold(2, h, 1).unfold(3, w, 1)
patches = patches.transpose(1, 3).reshape(-1, c, h, w).to(torch.float32)
n, c, h, w = patches.shape
X = patches.reshape(n, c * h * w)
X = X / (X.size(0) - 1) ** 0.5
covariance = X.t() @ X
eigenvalues, eigenvectors = torch.linalg.eigh(covariance)
eigenvalues = eigenvalues.flip(0)
eigenvectors = eigenvectors.t().reshape(c * h * w, c, h, w).flip(0)
return eigenvectors / torch.sqrt(eigenvalues + 1e-2).view(-1, 1, 1, 1)
class ResNetBagOfTricks(nn.Module):
def __init__(self, first_layer_weights, c_in, c_out, scale_out):
super().__init__()
c = first_layer_weights.size(0)
conv1 = nn.Conv2d(c_in, c, kernel_size=(3, 3), padding=(1, 1), bias=False)
conv1.weight.data = first_layer_weights
conv1.weight.requires_grad = False
self.conv1 = conv1
self.conv2 = conv_bn_relu(c, 64, kernel_size=(1, 1), padding=0)
self.conv3 = conv_pool_norm_act(64, 128)
self.conv4 = conv_bn_relu(128, 128)
self.conv5 = conv_bn_relu(128, 128)
self.conv6 = conv_pool_norm_act(128, 256)
self.conv7 = conv_pool_norm_act(256, 512)
self.conv8 = conv_bn_relu(512, 512)
self.conv9 = conv_bn_relu(512, 512)
self.pool10 = nn.MaxPool2d(kernel_size=4, stride=4)
self.linear11 = nn.Linear(512, c_out, bias=False)
self.scale_out = scale_out
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = self.conv3(x)
x = x + self.conv5(self.conv4(x))
x = self.conv6(x)
x = self.conv7(x)
x = x + self.conv9(self.conv8(x))
x = self.pool10(x)
x = x.reshape(x.size(0), x.size(1))
x = self.linear11(x)
x = self.scale_out * x
return x
Model = ResNetBagOfTricks