mia_on_model_distillation/wresnet-pytorch/src/train.py

199 lines
7.4 KiB
Python

import os
import time
import torch
from torch import optim
from torch.optim.lr_scheduler import MultiStepLR
import torch.nn as nn
import numpy as np
import random
from utils import json_file_to_pyobj, get_loaders
from WideResNet import WideResNet
from tqdm import tqdm
import opacus
from opacus.validators import ModuleValidator
from opacus.utils.batch_memory_manager import BatchMemoryManager
import warnings
warnings.filterwarnings("ignore")
def set_seed(seed=42):
torch.backends.cudnn.deterministic = True
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
def train_no_cap(net, epochs, data_loader, device, optimizer, criterion, scheduler, test_loader, log, logfile, checkpointFile):
best_test_set_accuracy = 0
for epoch in range(epochs):
net.train()
#for i, data in tqdm(enumerate(train_loader, 0), leave=False):
for i, data in enumerate(data_loader, 0):
inputs, labels = data
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
wrn_outputs = net(inputs)
outputs = wrn_outputs[0]
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
scheduler.step()
if epoch % 10 == 0 or epoch == epochs - 1:
with torch.no_grad():
correct = 0
total = 0
net.eval()
for data in test_loader:
images, labels = data
images = images.to(device)
labels = labels.to(device)
wrn_outputs = net(images)
outputs = wrn_outputs[0]
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
epoch_accuracy = correct / total
epoch_accuracy = round(100 * epoch_accuracy, 2)
if log:
print('Accuracy at epoch {} is {}%'.format(epoch + 1, epoch_accuracy))
with open(logfile, 'a') as temp:
temp.write('Accuracy at epoch {} is {}%\n'.format(epoch + 1, epoch_accuracy))
if epoch_accuracy > best_test_set_accuracy:
best_test_set_accuracy = epoch_accuracy
torch.save(net.state_dict(), checkpointFile)
return best_test_set_accuracy
def _train_seed(net, loaders, device, dataset, log=False, logfile='', epochs=200, norm=1.0, dp_epsilon=None):
train_loader, test_loader = loaders
dp_delta = 1e-5
checkpointFile = 'wrn-{}-{}e-{}d-{}n-dict.pt'.format(int(time.time()), dp_epsilon, dp_delta, norm)
#net = ModuleValidator.fix(net, replace_bn_with_in=True)
net = ModuleValidator.fix(net)
ModuleValidator.validate(net, strict=True)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, nesterov=True, weight_decay=5e-4)
scheduler = MultiStepLR(optimizer, milestones=[int(elem*epochs) for elem in [0.3, 0.6, 0.8]], gamma=0.2)
if dp_epsilon is not None:
privacy_engine = opacus.PrivacyEngine()
net, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=net,
optimizer=optimizer,
data_loader=train_loader,
epochs=epochs,
target_epsilon=dp_epsilon,
target_delta=dp_delta,
max_grad_norm=norm,
)
print(f"DP epsilon = {dp_epsilon}, delta = {dp_delta}")
print(f"Using sigma={optimizer.noise_multiplier} and C = norm = {norm}")
else:
print("Training without differential privacy")
print(f"Training with {epochs} epochs")
if dp_epsilon is not None:
with BatchMemoryManager(
data_loader=train_loader,
max_physical_batch_size=1000, # Roughly 12gb vram, uses 9.4
optimizer=optimizer
) as memory_safe_data_loader:
best_test_set_accuracy = train_no_cap(net, epochs, memory_safe_data_loader, device, optimizer, criterion, scheduler, test_loader, log, logfile, checkpointFile)
else:
best_test_set_accuracy = train_no_cap(net, epochs, train_loader, device, optimizer, criterion, scheduler, test_loader, log, logfile, checkpointFile)
return best_test_set_accuracy
def train(args):
json_options = json_file_to_pyobj(args.config)
training_configurations = json_options.training
wrn_depth = training_configurations.wrn_depth
wrn_width = training_configurations.wrn_width
dataset = training_configurations.dataset.lower()
#seeds = [int(seed) for seed in training_configurations.seeds]
seeds = [int.from_bytes(os.urandom(4), byteorder='big')]
log = True if training_configurations.log.lower() == 'true' else False
if log:
logfile = 'WideResNet-{}-{}-{}-{}-{}.txt'.format(wrn_depth, wrn_width, training_configurations.dataset, training_configurations.batch_size, training_configurations.epochs)
with open(logfile, 'w') as temp:
temp.write('WideResNet-{}-{} on {} {}batch for {} epochs\n'.format(wrn_depth, wrn_width, training_configurations.dataset, training_configurations.batch_size, training_configurations.epochs))
else:
logfile = ''
checkpoint = True if training_configurations.checkpoint.lower() == 'true' else False
loaders = get_loaders(dataset, training_configurations.batch_size)
if torch.cuda.is_available() and args.cuda:
device = torch.device(f'cuda:{args.cuda}')
elif torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
test_set_accuracies = []
for seed in seeds:
set_seed(seed)
if log:
with open(logfile, 'a') as temp:
temp.write('------------------- SEED {} -------------------\n'.format(seed))
strides = [1, 1, 2, 2]
net = WideResNet(d=wrn_depth, k=wrn_width, n_classes=10, input_features=3, output_features=16, strides=strides)
net = net.to(device)
epochs = training_configurations.epochs
best_test_set_accuracy = _train_seed(net, loaders, device, dataset, log, logfile, epochs, args.norm, args.epsilon)
if log:
with open(logfile, 'a') as temp:
temp.write('Best test set accuracy of seed {} is {}\n'.format(seed, best_test_set_accuracy))
test_set_accuracies.append(best_test_set_accuracy)
mean_test_set_accuracy, std_test_set_accuracy = np.mean(test_set_accuracies), np.std(test_set_accuracies)
if log:
with open(logfile, 'a') as temp:
temp.write('Mean test set accuracy is {} with standard deviation equal to {}\n'.format(mean_test_set_accuracy, std_test_set_accuracy))
if __name__ == '__main__':
import argparse
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 2, 3"
parser = argparse.ArgumentParser(description='WideResNet')
parser.add_argument('-config', '--config', help='Training Configurations', required=True)
parser.add_argument('--norm', type=float, help='dpsgd norm clip factor', required=True)
parser.add_argument('--cuda', type=int, help='gpu index', required=False)
parser.add_argument('--epsilon', type=float, help='dp epsilon', required=False, default=None)
args = parser.parse_args()
train(args)