117 lines
3.9 KiB
Python
117 lines
3.9 KiB
Python
|
# Copyright 2021 Google LLC
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# https://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
# pylint: skip-file
|
||
|
# pyformat: disable
|
||
|
|
||
|
import os
|
||
|
import numpy as np
|
||
|
import matplotlib.pyplot as plt
|
||
|
import functools
|
||
|
|
||
|
import matplotlib
|
||
|
matplotlib.rcParams['pdf.fonttype'] = 42
|
||
|
matplotlib.rcParams['ps.fonttype'] = 42
|
||
|
|
||
|
# from mi_lira_2021
|
||
|
from plot import sweep, load_data, generate_ours, generate_global
|
||
|
|
||
|
|
||
|
def do_plot_all(fn, keep, scores, legend='', metric='auc', sweep_fn=sweep, **plot_kwargs):
|
||
|
"""
|
||
|
Generate the ROC curves by using one model as test model and the rest to train,
|
||
|
with a full leave-one-out cross-validation.
|
||
|
"""
|
||
|
|
||
|
all_predictions = []
|
||
|
all_answers = []
|
||
|
for i in range(0, len(keep)):
|
||
|
mask = np.zeros(len(keep), dtype=bool)
|
||
|
mask[i:i+1] = True
|
||
|
prediction, answers = fn(keep[~mask],
|
||
|
scores[~mask],
|
||
|
keep[mask],
|
||
|
scores[mask])
|
||
|
all_predictions.extend(prediction)
|
||
|
all_answers.extend(answers)
|
||
|
|
||
|
fpr, tpr, auc, acc = sweep_fn(np.array(all_predictions),
|
||
|
np.array(all_answers, dtype=bool))
|
||
|
|
||
|
low = tpr[np.where(fpr < .001)[0][-1]]
|
||
|
print('Attack %s AUC %.4f, Accuracy %.4f, TPR@0.1%%FPR of %.4f'%(legend, auc, acc, low))
|
||
|
|
||
|
metric_text = ''
|
||
|
if metric == 'auc':
|
||
|
metric_text = 'auc=%.3f' % auc
|
||
|
elif metric == 'acc':
|
||
|
metric_text = 'acc=%.3f' % acc
|
||
|
|
||
|
plt.plot(fpr, tpr, label=legend+metric_text, **plot_kwargs)
|
||
|
return acc, auc
|
||
|
|
||
|
|
||
|
def fig_fpr_tpr(poison_mask, scores, keep):
|
||
|
|
||
|
plt.figure(figsize=(4, 3))
|
||
|
|
||
|
# evaluate LiRA on the points that were not targeted by poisoning
|
||
|
do_plot_all(functools.partial(generate_ours, fix_variance=True),
|
||
|
keep[:, ~poison_mask], scores[:, ~poison_mask],
|
||
|
"No poison (LiRA)\n",
|
||
|
metric='auc',
|
||
|
)
|
||
|
|
||
|
# evaluate the global-threshold attack on the points that were not targeted by poisoning
|
||
|
do_plot_all(generate_global,
|
||
|
keep[:, ~poison_mask], scores[:, ~poison_mask],
|
||
|
"No poison (Global threshold)\n",
|
||
|
metric='auc', ls="--", c=plt.gca().lines[-1].get_color()
|
||
|
)
|
||
|
|
||
|
# evaluate LiRA on the points that were targeted by poisoning
|
||
|
do_plot_all(functools.partial(generate_ours, fix_variance=True),
|
||
|
keep[:, poison_mask], scores[:, poison_mask],
|
||
|
"With poison (LiRA)\n",
|
||
|
metric='auc',
|
||
|
)
|
||
|
|
||
|
# evaluate the global-threshold attack on the points that were targeted by poisoning
|
||
|
do_plot_all(generate_global,
|
||
|
keep[:, poison_mask], scores[:, poison_mask],
|
||
|
"With poison (Global threshold)\n",
|
||
|
metric='auc', ls="--", c=plt.gca().lines[-1].get_color()
|
||
|
)
|
||
|
|
||
|
plt.semilogx()
|
||
|
plt.semilogy()
|
||
|
plt.xlim(1e-3, 1)
|
||
|
plt.ylim(1e-3, 1)
|
||
|
plt.xlabel("False Positive Rate")
|
||
|
plt.ylabel("True Positive Rate")
|
||
|
plt.plot([0, 1], [0, 1], ls='--', color='gray')
|
||
|
plt.subplots_adjust(bottom=.18, left=.18, top=.96, right=.96)
|
||
|
plt.legend(fontsize=8)
|
||
|
plt.savefig("/tmp/fprtpr.png")
|
||
|
plt.show()
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
logdir = "exp/cifar10/"
|
||
|
scores, keep = load_data(logdir)
|
||
|
poison_pos = np.load(os.path.join(logdir, "poison_pos.npy"))
|
||
|
poison_mask = np.zeros(scores.shape[1], dtype=bool)
|
||
|
poison_mask[poison_pos] = True
|
||
|
fig_fpr_tpr(poison_mask, scores, keep)
|