tensorflow_privacy/research/mi_lira_2021/inference.py

151 lines
5.2 KiB
Python
Raw Normal View History

# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import os
from typing import Callable
import json
import re
import jax
import jax.numpy as jn
import numpy as np
import tensorflow as tf # For data augmentation.
import tensorflow_datasets as tfds
from absl import app, flags
from tqdm import tqdm, trange
import pickle
from functools import partial
import objax
from objax.jaxboard import SummaryWriter, Summary
from objax.util import EasyDict
from objax.zoo import convnet, wide_resnet
from dataset import DataSet
from train import MemModule, network
from collections import defaultdict
FLAGS = flags.FLAGS
def main(argv):
"""
Perform inference of the saved model in order to generate the
output logits, using a particular set of augmentations.
"""
del argv
tf.config.experimental.set_visible_devices([], "GPU")
def load(arch):
return MemModule(network(arch), nclass=100 if FLAGS.dataset == 'cifar100' else 10,
mnist=FLAGS.dataset == 'mnist',
arch=arch,
lr=.1,
batch=0,
epochs=0,
weight_decay=0)
def cache_load(arch):
thing = []
def fn():
if len(thing) == 0:
thing.append(load(arch))
return thing[0]
return fn
xs_all = np.load(os.path.join(FLAGS.logdir,"x_train.npy"))[:FLAGS.dataset_size]
ys_all = np.load(os.path.join(FLAGS.logdir,"y_train.npy"))[:FLAGS.dataset_size]
def get_loss(model, xbatch, ybatch, shift, reflect=True, stride=1):
outs = []
for aug in [xbatch, xbatch[:,:,::-1,:]][:reflect+1]:
aug_pad = tf.pad(aug, [[0] * 2, [shift] * 2, [shift] * 2, [0] * 2], mode='REFLECT').numpy()
for dx in range(0, 2*shift+1, stride):
for dy in range(0, 2*shift+1, stride):
this_x = aug_pad[:, dx:dx+32, dy:dy+32, :].transpose((0,3,1,2))
logits = model.model(this_x, training=True)
outs.append(logits)
print(np.array(outs).shape)
return np.array(outs).transpose((1, 0, 2))
N = 5000
def features(model, xbatch, ybatch):
return get_loss(model, xbatch, ybatch,
shift=0, reflect=True, stride=1)
for path in sorted(os.listdir(os.path.join(FLAGS.logdir))):
if re.search(FLAGS.regex, path) is None:
print("Skipping from regex")
continue
hparams = json.load(open(os.path.join(FLAGS.logdir, path, "hparams.json")))
arch = hparams['arch']
model = cache_load(arch)()
logdir = os.path.join(FLAGS.logdir, path)
checkpoint = objax.io.Checkpoint(logdir, keep_ckpts=10, makedir=True)
max_epoch, last_ckpt = checkpoint.restore(model.vars())
if max_epoch == 0: continue
if not os.path.exists(os.path.join(FLAGS.logdir, path, "logits")):
os.mkdir(os.path.join(FLAGS.logdir, path, "logits"))
if FLAGS.from_epoch is not None:
first = FLAGS.from_epoch
else:
first = max_epoch-1
for epoch in range(first,max_epoch+1):
if not os.path.exists(os.path.join(FLAGS.logdir, path, "ckpt", "%010d.npz"%epoch)):
# no checkpoint saved here
continue
if os.path.exists(os.path.join(FLAGS.logdir, path, "logits", "%010d.npy"%epoch)):
print("Skipping already generated file", epoch)
continue
try:
start_epoch, last_ckpt = checkpoint.restore(model.vars(), epoch)
except:
print("Fail to load", epoch)
continue
stats = []
for i in range(0,len(xs_all),N):
stats.extend(features(model, xs_all[i:i+N],
ys_all[i:i+N]))
# This will be shape N, augs, nclass
np.save(os.path.join(FLAGS.logdir, path, "logits", "%010d"%epoch),
np.array(stats)[:,None,:,:])
if __name__ == '__main__':
flags.DEFINE_string('dataset', 'cifar10', 'Dataset.')
flags.DEFINE_string('logdir', 'experiments/', 'Directory where to save checkpoints and tensorboard data.')
flags.DEFINE_string('regex', '.*experiment.*', 'keep files when matching')
flags.DEFINE_bool('random_labels', False, 'use random labels.')
flags.DEFINE_integer('dataset_size', 50000, 'size of dataset.')
flags.DEFINE_integer('from_epoch', None, 'which epoch to load from.')
flags.DEFINE_integer('seed_mod', None, 'keep mod seed.')
flags.DEFINE_integer('modulus', 8, 'modulus.')
app.run(main)