tensorflow_privacy/tutorials/movielens_tutorial.py

212 lines
9.3 KiB
Python
Raw Normal View History

2020-01-02 01:35:37 -07:00
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Training a deep NN on MovieLens with differentially private Adam optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
import numpy as np
import tensorflow as tf
2020-01-19 05:27:35 -07:00
import pandas as pd
from scipy.stats import rankdata
from sklearn.model_selection import train_test_split
2020-01-02 01:35:37 -07:00
from tensorflow_privacy.privacy.optimizers import dp_optimizer
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_eps_poisson
from tensorflow_privacy.privacy.analysis.gdp_accountant import compute_mu_poisson
2020-01-02 01:35:37 -07:00
#### FLAGS
2020-01-19 05:27:35 -07:00
FLAGS = flags.FLAGS
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', .01, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.55,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 5, 'Clipping norm')
flags.DEFINE_integer('epochs', 25, 'Number of epochs')
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
flags.DEFINE_string('model_dir', None, 'Model directory')
2020-01-02 01:35:37 -07:00
2020-01-21 19:42:27 -07:00
sampling_batch = 10000
2020-01-19 05:27:35 -07:00
microbatches = 10000
2020-01-21 19:28:09 -07:00
num_examples = 800167
2020-01-02 01:35:37 -07:00
def nn_model_fn(features, labels, mode):
2020-01-19 05:27:35 -07:00
'''NN adapted from github.com/hexiangnan/neural_collaborative_filtering'''
2020-01-02 01:35:37 -07:00
n_latent_factors_user = 10
n_latent_factors_movie = 10
n_latent_factors_mf = 5
2020-01-19 05:27:35 -07:00
user_input = tf.reshape(features['user'], [-1, 1])
item_input = tf.reshape(features['movie'], [-1, 1])
# number of users: 6040; number of movies: 3706
mf_embedding_user = tf.keras.layers.Embedding(6040, n_latent_factors_mf, input_length=1)
mf_embedding_item = tf.keras.layers.Embedding(3706, n_latent_factors_mf, input_length=1)
mlp_embedding_user = tf.keras.layers.Embedding(6040, n_latent_factors_user, input_length=1)
mlp_embedding_item = tf.keras.layers.Embedding(3706, n_latent_factors_movie, input_length=1)
2020-01-02 01:35:37 -07:00
# GMF part
# Flatten the embedding vector as latent features in GMF
mf_user_latent = tf.keras.layers.Flatten()(mf_embedding_user(user_input))
mf_item_latent = tf.keras.layers.Flatten()(mf_embedding_item(item_input))
# Element-wise multiply
mf_vector = tf.keras.layers.multiply([mf_user_latent, mf_item_latent])
# MLP part
# Flatten the embedding vector as latent features in MLP
mlp_user_latent = tf.keras.layers.Flatten()(mlp_embedding_user(user_input))
mlp_item_latent = tf.keras.layers.Flatten()(mlp_embedding_item(item_input))
# Concatenation of two latent features
mlp_vector = tf.keras.layers.concatenate([mlp_user_latent, mlp_item_latent])
2020-01-19 05:27:35 -07:00
2020-01-02 01:35:37 -07:00
predict_vector = tf.keras.layers.concatenate([mf_vector, mlp_vector])
2020-01-19 05:27:35 -07:00
logits = tf.keras.layers.Dense(5)(predict_vector)
2020-01-02 01:35:37 -07:00
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(vector_loss)
2020-01-19 05:27:35 -07:00
2020-01-02 01:35:37 -07:00
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
2020-01-19 05:27:35 -07:00
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.compat.v1.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.compat.v1.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
train_op=train_op)
2020-01-02 01:35:37 -07:00
# Add evaluation metrics (for EVAL mode).
2020-01-19 05:27:35 -07:00
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'rmse':
tf.compat.v1.metrics.root_mean_squared_error(
labels=tf.cast(labels, tf.float32),
predictions=tf.tensordot(a=tf.nn.softmax(logits, axis=1),
b=tf.constant(np.array([0, 1, 2, 3, 4]),
dtype=tf.float32),
axes=1))
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
eval_metric_ops=eval_metric_ops)
return None
2020-01-02 01:35:37 -07:00
2020-01-21 19:28:09 -07:00
def load_movielens():
2020-01-19 05:27:35 -07:00
"""Loads MovieLens 1M as from https://grouplens.org/datasets/movielens/1m"""
data = pd.read_csv('ratings.dat', sep='::', header=None,
names=["userId", "movieId", "rating", "timestamp"])
n_users = len(set(data['userId']))
n_movies = len(set(data['movieId']))
print('number of movie: ', n_movies)
print('number of user: ', n_users)
2020-01-02 01:35:37 -07:00
# give unique dense movie index to movieId
2020-01-19 05:27:35 -07:00
data['movieIndex'] = rankdata(data['movieId'], method='dense')
2020-01-02 01:35:37 -07:00
# minus one to reduce the minimum value to 0, which is the start of col index
2020-01-19 05:27:35 -07:00
print('number of ratings:', data.shape[0])
print('percentage of sparsity:', (1-data.shape[0]/n_users/n_movies)*100, '%')
train, test = train_test_split(data, test_size=0.2, random_state=100)
2020-01-02 01:35:37 -07:00
return train.values-1, test.values-1, np.mean(train['rating'])
def main(unused_argv):
2020-01-19 05:27:35 -07:00
'''main'''
tf.compat.v1.logging.set_verbosity(3)
# Load training and test data.
2020-01-21 19:28:09 -07:00
train_data, test_data, mean = load_movielens()
2020-01-19 05:27:35 -07:00
# Instantiate the tf.Estimator.
ml_classifier = tf.estimator.Estimator(model_fn=nn_model_fn,
model_dir=FLAGS.model_dir)
# Create tf.Estimator input functions for the training and test data.
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={'user': test_data[:, 0], 'movie': test_data[:, 4]},
y=test_data[:, 2],
num_epochs=1,
shuffle=False)
# Training loop.
2020-01-21 19:42:27 -07:00
steps_per_epoch = num_examples // sampling_batch
2020-01-19 05:27:35 -07:00
test_accuracy_list = []
for epoch in range(1, FLAGS.epochs + 1):
for step in range(steps_per_epoch):
2020-01-21 19:42:27 -07:00
whether = np.random.random_sample(num_examples) > (1-sampling_batch/num_examples)
2020-01-21 19:28:09 -07:00
subsampling = [i for i in np.arange(num_examples) if whether[i]]
2020-01-19 05:27:35 -07:00
global microbatches
microbatches = len(subsampling)
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={'user': train_data[subsampling, 0], 'movie': train_data[subsampling, 4]},
y=train_data[subsampling, 2],
batch_size=len(subsampling),
num_epochs=1,
shuffle=True)
# Train the model for one step.
ml_classifier.train(input_fn=train_input_fn, steps=1)
# Evaluate the model and print results
eval_results = ml_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['rmse']
test_accuracy_list.append(test_accuracy)
print('Test RMSE after %d epochs is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
2020-01-21 19:42:27 -07:00
eps = compute_eps_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch, 1e-6)
mu = compute_mu_poisson(epoch, FLAGS.noise_multiplier, num_examples, sampling_batch)
2020-01-19 05:27:35 -07:00
print('For delta=1e-6, the current epsilon is: %.2f' % eps)
print('For delta=1e-6, the current mu is: %.2f' % mu)
if mu > FLAGS.max_mu:
break
else:
print('Trained with vanilla non-private SGD optimizer')
2020-01-02 01:35:37 -07:00
if __name__ == '__main__':
2020-01-19 05:27:35 -07:00
app.run(main)