tensorflow_privacy/research/dp_newton/src/run.py

265 lines
8 KiB
Python
Raw Normal View History

# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""collections of helper function to run and compare different algorithms"""
# pylint: skip-file
# pyformat: disable
import argparse
import json
from dataset_loader import Mydatasets
from my_logistic_regression import MyLogisticRegression
import numpy as np
from opt_algs import CompareAlgs, DoubleNoiseMech, gd_priv, private_newton
from scipy.optimize import fsolve
def zcdp_to_eps(rho, delta):
""" "
conversion of zcdp gurantee to (eps,delta)-DP using the formula in Lemma 3.6
of [BS16]
rho : zCDP
delta: delta in DP
return eps
"""
return rho + np.sqrt(4 * rho * np.log(np.sqrt(np.pi * rho) / delta))
def eps_to_zcdp(eps, delta):
""" "
conversion of (eps,delta) gurantee to rho-zCDP
eps : eps in DP
delta: delta in DP
return rho
"""
def func_root(rho_zcdp):
return zcdp_to_eps(rho_zcdp, delta) - eps
root = fsolve(func_root, x0=0.001)[-1]
return root
def helper_fun(datasetname, alg_type, params_exp):
"""helper function for running different algorithms
args:
datasetname = dataset
alg_type = type of the optimization algorithm
params_exp = hyperparameters
"""
feature_vecs, labels, w_opt = getattr(Mydatasets(), datasetname)()
privacy_dp = params_exp["total"]
params_exp["total"] = eps_to_zcdp(privacy_dp, (1.0 / len(labels)) ** 2)
log_reg = MyLogisticRegression(feature_vecs, labels)
alg_dict, filename_params = prepare_alg_dict(
alg_type, datasetname, privacy_dp, params_exp, log_reg
)
compare_algs = CompareAlgs(log_reg, w_opt, params_exp)
result = RunReleaseStats(compare_algs, alg_dict).summarize_stats()
result["num-samples"] = len(labels)
with open(
"src/results/" + filename_params, "w", encoding="utf8"
) as json_file:
json.dump(result, json_file)
def prepare_alg_dict(alg_type, datasetname, privacy_dp, params_exp, log_reg):
"""prepare update rule for algorithms and filename"""
alg_dict = None
filename_params = None
if alg_type == "double_noise":
filename_params = (
"so_"
+ datasetname
+ "_"
+ str(privacy_dp)
+ "_"
+ "DP"
+ "_"
+ str(params_exp["num_iteration"])
+ "_"
+ str(params_exp["grad_frac"])
+ "_"
+ str(params_exp["trace_frac"])
+ "_"
+ str(params_exp["trace_coeff"])
+ ".txt"
)
dnm_hess_add = DoubleNoiseMech(
log_reg, type_reg="add", curvature_info="hessian"
).update_rule
dnm_ub_add = DoubleNoiseMech(
log_reg, type_reg="add", curvature_info="ub"
).update_rule
dnm_hess_clip = DoubleNoiseMech(
log_reg, type_reg="clip", curvature_info="hessian"
).update_rule
dnm_ub_clip = DoubleNoiseMech(
log_reg, type_reg="clip", curvature_info="ub"
).update_rule
alg_dict = {
"DN-Hess-add": dnm_hess_add,
"DN-Hess-clip": dnm_hess_clip,
"DN-UB-clip": dnm_ub_clip,
"DN-UB-add": dnm_ub_add,
}
elif alg_type == "dp_gd":
filename_params = (
"gd_"
+ datasetname
+ "_"
+ str(privacy_dp)
+ "_"
+ "DP"
+ "_"
+ str(params_exp["num_iteration"])
+ ".txt"
)
alg_dict = {"DPGD": gd_priv}
elif alg_type == "damped_newton":
filename_params = (
"newton_"
+ datasetname
+ "_"
+ str(privacy_dp)
+ "_"
+ "DP"
+ "_"
+ str(params_exp["num_iteration"])
+ ".txt"
)
alg_dict = {"private-newton": private_newton}
return alg_dict, filename_params
class RunReleaseStats:
"""Helpfer function to run different algorithms and store the results"""
def __init__(self, compare_algs, algs_dict, num_rep=10):
self.compare_algs = compare_algs
self.algs_dict = algs_dict
self.num_rep = num_rep
self.losses = 0
self.gradnorm = 0
self.accuracy = 0
self.wall_clock = 0
def run_algs(self):
"""method to run different algorithms and store different stats"""
for rep in range(self.num_rep):
for alg_name, alg_update_rule in self.algs_dict.items():
self.compare_algs.add_algo(alg_update_rule, alg_name)
losses_dict = self.compare_algs.loss_vals()
gradnorm_dict = self.compare_algs.gradnorm_vals()
accuracy_dict = self.compare_algs.accuracy_vals()
wall_clock_dict = self.compare_algs.wall_clock_alg()
if rep == 0:
self.losses = losses_dict
self.gradnorm = gradnorm_dict
self.accuracy = accuracy_dict
self.wall_clock = wall_clock_dict
else:
for alg in self.losses:
self.losses[alg].extend(losses_dict[alg])
self.gradnorm[alg].extend(gradnorm_dict[alg])
self.accuracy[alg].extend(accuracy_dict[alg])
self.wall_clock[alg].extend(wall_clock_dict[alg])
def summarize_stats(self):
"""method to summarize the results"""
self.run_algs()
result = {}
result["acc-best"] = self.compare_algs.accuracy_np().tolist()
for alg in self.losses:
result[alg] = {}
loss_avg = np.mean(np.array(self.losses[alg]), axis=0)
loss_std = np.std(np.array(self.losses[alg]), axis=0)
result[alg]["loss_avg"] = (loss_avg).tolist()
result[alg]["loss_std"] = (loss_std / np.sqrt(self.num_rep)).tolist()
gradnorm_avg = np.mean(np.array(self.gradnorm[alg]), axis=0)
gradnorm_std = np.std(np.array(self.gradnorm[alg]), axis=0)
result[alg]["gradnorm_avg"] = (gradnorm_avg).tolist()
result[alg]["gradnorm_std"] = (gradnorm_std).tolist()
acc_avg = np.mean(np.array(self.accuracy[alg]), axis=0)
acc_std = np.std(np.array(self.accuracy[alg]), axis=0)
result[alg]["acc_avg"] = (acc_avg).tolist()
result[alg]["acc_std"] = (acc_std / np.sqrt(self.num_rep)).tolist()
clocktime_avg = np.mean(np.array(self.wall_clock[alg]), axis=0)
clocktime_std = np.std(np.array(self.wall_clock[alg]), axis=0)
result[alg]["clock_time_avg"] = (clocktime_avg).tolist()
result[alg]["clock_time_std"] = (
clocktime_std / np.sqrt(self.num_rep)
).tolist()
return result
def main():
"""main function"""
parser = argparse.ArgumentParser()
parser.add_argument("--datasetname")
parser.add_argument("--alg_type")
parser.add_argument("--total")
parser.add_argument("--numiter")
# double noise and newton
parser.add_argument("--grad_frac")
parser.add_argument("--trace_frac")
parser.add_argument("--trace_coeff")
args = parser.parse_args()
datasetname = args.datasetname
alg_type = args.alg_type
total = float(args.total)
num_iter = int(args.numiter)
if alg_type == "double_noise":
grad_frac = float(args.grad_frac)
trace_frac = float(args.trace_frac)
trace_coeff = float(args.trace_coeff)
hyper_parameters = {
"total": total,
"grad_frac": grad_frac,
"trace_frac": trace_frac,
"trace_coeff": trace_coeff,
"num_iteration": num_iter,
}
elif alg_type == "dp_gd":
hyper_parameters = {"total": total, "num_iteration": num_iter}
elif alg_type == "damped_newton":
grad_frac = float(args.grad_frac)
hyper_parameters = {
"total": total,
"num_iteration": num_iter,
"grad_frac": grad_frac,
}
else:
raise ValueError("no such optmization algorithm exists")
print(
"optimization algorithm "
+ alg_type
+ ","
+ "dataset name: "
+ datasetname
)
helper_fun(datasetname, alg_type, hyper_parameters)
if __name__ == "__main__":
main()