Add a parameter to the noise function that explicitly specifies the loss reduction type.

PiperOrigin-RevId: 583507445
This commit is contained in:
William Kong 2023-11-17 15:54:20 -08:00 committed by A. Unique TensorFlower
parent 39c8a8c1af
commit 03db50ba94
5 changed files with 99 additions and 12 deletions

View file

@ -38,6 +38,7 @@ py_test(
name = "gradient_clipping_utils_test",
srcs = ["gradient_clipping_utils_test.py"],
python_version = "PY3",
shard_count = 8,
srcs_version = "PY3",
deps = [
":gradient_clipping_utils",

View file

@ -14,7 +14,7 @@
"""Utility functions that help in the computation of per-example gradient norms."""
from collections.abc import Sequence, Set
from typing import Any, Optional
from typing import Any, Literal, Optional
from absl import logging
import tensorflow as tf
@ -145,11 +145,12 @@ def all_trainable_layers_are_registered(
def add_aggregate_noise(
input_model: tf.keras.Model,
clipped_grads: list[tf.Tensor],
batch_size: tf.Tensor,
l2_norm_clip: float,
noise_multiplier: float,
loss_reduction: Optional[Literal['mean', 'sum']] = None,
loss_model: Optional[tf.keras.Model] = None,
) -> Sequence[tf.Tensor]:
"""Adds noise to a collection of clipped gradients.
@ -157,25 +158,53 @@ def add_aggregate_noise(
input model's loss function.
Args:
input_model: The `tf.keras.Model` to obtain the layers from.
clipped_grads: A list of `tf.Tensor`s representing the clipped gradients.
batch_size: The batch size, used for normalizing the noise, when the loss
reduction is AUTO or SUM_OVER_BATCH_SIZE.
batch_size: The batch size. Used for normalizing the noise when
`loss_reduction` is 'sum'.
l2_norm_clip: Clipping norm (max L2 norm of each gradient).
noise_multiplier: Ratio of the standard deviation to the clipping norm.
loss_reduction: An string description of how the loss is reduced over
examples. Currently supports 'mean' and 'sum'. If `None`, then the
aggregation type must be inferred from `input_model.loss`.
loss_model: An optional `tf.keras.Model` used to infer the loss reduction
strategy from if `loss_reduction` is `None`.
Returns:
A list of tensors containing the clipped gradients, but with the right
amount of Gaussian noise added to them (depending on the reduction
strategy of the loss function).
Raises:
ValueError: If both `loss_model` and `loss_reduction` are `None` or if
they are both not `None`.
"""
scale = l2_norm_clip
if input_model.loss.reduction in [
if loss_reduction is None and loss_model is None:
raise ValueError(
'Exactly one of `loss_reduction` and `loss_model` must be populated.'
' Instead, both arguments were `None`.'
)
if loss_reduction is not None and loss_model is not None:
raise ValueError(
'Exactly one of `loss_reduction` and `loss_model` must be populated.'
' Instead, both arguments were not `None`.'
)
if loss_reduction is None and loss_model is not None:
implicit_mean_reductions = [
tf.keras.losses.Reduction.SUM_OVER_BATCH_SIZE,
tf.keras.losses.Reduction.AUTO,
]:
if input_model.loss.reduction == tf.keras.losses.Reduction.AUTO:
logging.info('Assuming that the loss reduction is `SUM_OVER_BATCH_SIZE`.')
]
model_reduction = loss_model.loss.reduction
loss_reduction = (
'mean' if model_reduction in implicit_mean_reductions else 'sum'
)
if model_reduction == tf.keras.losses.Reduction.AUTO:
logging.info(
'Assuming that the model loss reduction is `SUM_OVER_BATCH_SIZE`.'
)
scale = l2_norm_clip
if loss_reduction == 'mean':
scale /= tf.cast(batch_size, tf.float32)
def add_noise(g):

View file

@ -15,6 +15,7 @@
from typing import Any
from absl.testing import parameterized
import numpy as np
import tensorflow as tf
from tensorflow_privacy.privacy.fast_gradient_clipping import gradient_clipping_utils
@ -134,6 +135,60 @@ class ModelForwardPassTest(tf.test.TestCase, parameterized.TestCase):
self.assertAllClose(computed_outputs, true_outputs)
class AddAggregateNoise(tf.test.TestCase, parameterized.TestCase):
@parameterized.product(
l2_norm_clip=[3.0, 5.0],
noise_multiplier=[2.0, 4.0],
batch_size=[1, 2, 10],
model_fn_reduction=[None, 'auto', 'sum_over_batch_size', 'sum'],
noise_fn_reduction=[None, 'mean', 'sum'],
)
def test_noise_is_computed_correctly(
self,
l2_norm_clip,
noise_multiplier,
batch_size,
model_fn_reduction,
noise_fn_reduction,
):
# Skip invalid combinations.
if model_fn_reduction is None and noise_fn_reduction is None:
return
if model_fn_reduction is not None and noise_fn_reduction is not None:
return
# Make an simple model container for storing the loss.
if model_fn_reduction is not None:
linear_model = tf.keras.Sequential([tf.keras.layers.Dense(1)])
linear_model.compile(
loss=tf.keras.losses.MeanSquaredError(reduction=model_fn_reduction)
)
else:
linear_model = None
# The main computation is done on a deterministic dummy vector.
num_units = 100
clipped_grads = [
tf.expand_dims(np.arange(num_units, dtype=np.float32), axis=-1)
]
noised_grads = gradient_clipping_utils.add_aggregate_noise(
clipped_grads,
batch_size,
l2_norm_clip,
noise_multiplier,
noise_fn_reduction,
linear_model,
)
# The only measure that varies is the standard deviation of the variation.
scale = (
1.0
if noise_fn_reduction == 'sum' or model_fn_reduction == 'sum'
else 1.0 / batch_size
)
computed_std = np.std(noised_grads[0] - clipped_grads[0])
expected_std = l2_norm_clip * noise_multiplier * scale
self.assertNear(computed_std, expected_std, 0.1 * expected_std)
class GenerateOutputsUsingCoreKerasLayers(
tf.test.TestCase, parameterized.TestCase
):

View file

@ -25,6 +25,7 @@ py_test(
name = "dp_keras_model_test",
srcs = ["dp_keras_model_test.py"],
python_version = "PY3",
shard_count = 16,
srcs_version = "PY3",
deps = [
"//tensorflow_privacy/privacy/fast_gradient_clipping:layer_registry",

View file

@ -264,11 +264,12 @@ def make_dp_model_class(cls):
output_metrics[_PRIVATIZED_LOSS_NAME] = clipping_loss
if self._noise_multiplier > 0:
grads = gradient_clipping_utils.add_aggregate_noise(
self,
clipped_grads,
num_microbatches,
self._l2_norm_clip,
self._noise_multiplier,
loss_reduction=None,
loss_model=self,
)
else:
grads = clipped_grads