diff --git a/tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py b/tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py index 4e19a49..7ef73a1 100644 --- a/tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py +++ b/tensorflow_privacy/privacy/dp_query/tree_aggregation_query.py @@ -22,6 +22,7 @@ the leaf nodes of the tree arrive one by one as the time proceeds. """ import distutils import math +from typing import Optional import attr import tensorflow as tf @@ -731,3 +732,224 @@ def _get_add_noise(stddev, seed: int = None): return v + tf.cast(random_normal(tf.shape(input=v)), dtype=v.dtype) return add_noise + + +class CentralTreeSumQuery(dp_query.SumAggregationDPQuery): + """Implements dp_query for differentially private tree aggregation protocol. + + Implements a central variant of the tree aggregation protocol from the paper + "'Is interaction necessary for distributed private learning?.' Adam Smith, + Abhradeep Thakurta, Jalaj Upadhyay" by replacing their local randomizer with + gaussian mechanism. The first step is to clip the clients' local updates (i.e. + a 1-D array containing the leaf nodes of the tree) by L1 norm to make sure it + does not exceed a prespecified upper bound. The second step is to construct + the tree on the clipped update. The third step is to add independent gaussian + noise to each node in the tree. The returned tree can support efficient and + accurate range queries with differential privacy. + """ + + @attr.s(frozen=True) + class GlobalState(object): + """Class defining global state for `CentralTreeSumQuery`. + + Attributes: + l1_bound: An upper bound on the L1 norm of the input record. This is + needed to bound the sensitivity and deploy differential privacy. + """ + l1_bound = attr.ib() + + def __init__(self, + stddev: float, + arity: int = 2, + l1_bound: int = 10, + seed: Optional[int] = None): + """Initializes the `CentralTreeSumQuery`. + + Args: + stddev: The stddev of the noise added to each internal node of the + constructed tree. + arity: The branching factor of the tree. + l1_bound: An upper bound on the L1 norm of the input record. This is + needed to bound the sensitivity and deploy differential privacy. + seed: Random seed to generate Gaussian noise. Defaults to `None`. Only for + test purpose. + """ + self._stddev = stddev + self._arity = arity + self._l1_bound = l1_bound + self._seed = seed + + def initial_global_state(self): + """Implements `tensorflow_privacy.DPQuery.initial_global_state`.""" + return CentralTreeSumQuery.GlobalState(l1_bound=self._l1_bound) + + def derive_sample_params(self, global_state): + """Implements `tensorflow_privacy.DPQuery.derive_sample_params`.""" + return global_state.l1_bound + + def preprocess_record(self, params, record): + """Implements `tensorflow_privacy.DPQuery.preprocess_record`.""" + casted_record = tf.cast(record, tf.float32) + l1_norm = tf.norm(casted_record, ord=1) + + l1_bound = tf.cast(params, tf.float32) + + preprocessed_record, _ = tf.clip_by_global_norm([casted_record], + l1_bound, + use_norm=l1_norm) + + return preprocessed_record[0] + + def get_noised_result(self, sample_state, global_state): + """Implements `tensorflow_privacy.DPQuery.get_noised_result`. + + Args: + sample_state: a frequency histogram. + global_state: hyper-parameters of the query. + + Returns: + a `tf.RaggedTensor` representing the tree built on top of `sample_state`. + The jth node on the ith layer of the tree can be accessed by tree[i][j] + where tree is the returned value. + """ + add_noise = _get_add_noise(self._stddev, self._seed) + tree = _build_tree_from_leaf(sample_state, self._arity) + return tf.map_fn(add_noise, tree), global_state + + +class DistributedTreeSumQuery(dp_query.SumAggregationDPQuery): + """Implements dp_query for differentially private tree aggregation protocol. + + The difference from `CentralTreeSumQuery` is that the tree construction and + gaussian noise addition happen in `preprocess_records`. The difference only + takes effect when used together with + `tff.aggregators.DifferentiallyPrivateFactory`. In other cases, this class + should be treated as equal with `CentralTreeSumQuery`. + + Implements a distributed version of the tree aggregation protocol from. "Is + interaction necessary for distributed private learning?." by replacing their + local randomizer with gaussian mechanism. The first step is to check the L1 + norm of the clients' local updates (i.e. a 1-D array containing the leaf nodes + of the tree) to make sure it does not exceed a prespecified upper bound. The + second step is to construct the tree. The third step is to add independent + gaussian noise to each node in the tree. The returned tree can support + efficient and accurate range queries with differential privacy. + """ + + @attr.s(frozen=True) + class GlobalState(object): + """Class defining global state for DistributedTreeSumQuery. + + Attributes: + stddev: The stddev of the noise added to each internal node in the + constructed tree. + arity: The branching factor of the tree (i.e. the number of children each + internal node has). + l1_bound: An upper bound on the L1 norm of the input record. This is + needed to bound the sensitivity and deploy differential privacy. + """ + stddev = attr.ib() + arity = attr.ib() + l1_bound = attr.ib() + + def __init__(self, + stddev: float, + arity: int = 2, + l1_bound: int = 10, + seed: Optional[int] = None): + """Initializes the `DistributedTreeSumQuery`. + + Args: + stddev: The stddev of the noise added to each node in the tree. + arity: The branching factor of the tree. + l1_bound: An upper bound on the L1 norm of the input record. This is + needed to bound the sensitivity and deploy differential privacy. + seed: Random seed to generate Gaussian noise. Defaults to `None`. Only for + test purpose. + """ + self._stddev = stddev + self._arity = arity + self._l1_bound = l1_bound + self._seed = seed + + def initial_global_state(self): + """Implements `tensorflow_privacy.DPQuery.initial_global_state`.""" + return DistributedTreeSumQuery.GlobalState( + stddev=self._stddev, arity=self._arity, l1_bound=self._l1_bound) + + def derive_sample_params(self, global_state): + """Implements `tensorflow_privacy.DPQuery.derive_sample_params`.""" + return (global_state.stddev, global_state.arity, global_state.l1_bound) + + def preprocess_record(self, params, record): + """Implements `tensorflow_privacy.DPQuery.preprocess_record`. + + This method clips the input record by L1 norm, constructs a tree on top of + it, and adds gaussian noise to each node of the tree for differential + privacy. Unlike `get_noised_result` in `CentralTreeSumQuery`, this function + flattens the `tf.RaggedTensor` before outputting it. This is useful when + used inside `tff.aggregators.DifferentiallyPrivateFactory` because it does + not accept ragged output tensor. + + Args: + params: hyper-parameters for preprocessing record, (stddev, aritry, + l1_bound) + record: leaf nodes for the tree. + + Returns: + `tf.Tensor` representing the flattened version of the tree. + """ + _, arity, l1_bound_ = params + l1_bound = tf.cast(l1_bound_, tf.float32) + + casted_record = tf.cast(record, tf.float32) + l1_norm = tf.norm(casted_record, ord=1) + + preprocessed_record, _ = tf.clip_by_global_norm([casted_record], + l1_bound, + use_norm=l1_norm) + preprocessed_record = preprocessed_record[0] + + add_noise = _get_add_noise(self._stddev, self._seed) + tree = _build_tree_from_leaf(preprocessed_record, arity) + noisy_tree = tf.map_fn(add_noise, tree) + + # The following codes reshape the output vector so the output shape of can + # be statically inferred. This is useful when used with + # `tff.aggregators.DifferentiallyPrivateFactory` because it needs to know + # the output shape of this function statically and explicitly. + flat_noisy_tree = noisy_tree.flat_values + flat_tree_shape = [ + (self._arity**(math.ceil(math.log(record.shape[0], self._arity)) + 1) - + 1) // (self._arity - 1) + ] + return tf.reshape(flat_noisy_tree, flat_tree_shape) + + def get_noised_result(self, sample_state, global_state): + """Implements `tensorflow_privacy.DPQuery.get_noised_result`. + + This function re-constructs the `tf.RaggedTensor` from the flattened tree + output by `preprocess_records.` + + Args: + sample_state: `tf.Tensor` for the flattened tree. + global_state: hyper-parameters including noise multiplier, the branching + factor of the tree and the maximum records per user. + + Returns: + a `tf.RaggedTensor` for the tree. + """ + # The [0] is needed because of how tf.RaggedTensor.from_two_splits works. + # print(tf.RaggedTensor.from_row_splits(values=[3, 1, 4, 1, 5, 9, 2, 6], + # row_splits=[0, 4, 4, 7, 8, 8])) + # + # This part is not written in tensorflow and will be executed on the server + # side instead of the client side if used with + # tff.aggregators.DifferentiallyPrivateFactory for federated learning. + row_splits = [0] + [ + (self._arity**(x + 1) - 1) // (self._arity - 1) for x in range( + math.floor(math.log(sample_state.shape[0], self._arity)) + 1) + ] + tree = tf.RaggedTensor.from_row_splits( + values=sample_state, row_splits=row_splits) + return tree, global_state diff --git a/tensorflow_privacy/privacy/dp_query/tree_aggregation_query_test.py b/tensorflow_privacy/privacy/dp_query/tree_aggregation_query_test.py index f88ed90..1bfaa21 100644 --- a/tensorflow_privacy/privacy/dp_query/tree_aggregation_query_test.py +++ b/tensorflow_privacy/privacy/dp_query/tree_aggregation_query_test.py @@ -630,5 +630,242 @@ class TreeRangeSumQueryTest(tf.test.TestCase, parameterized.TestCase): sample_state, tf.ragged.constant([[1.], [1., 0.]]), atol=10 * stddev) +class CentralTreeSumQueryTest(tf.test.TestCase, parameterized.TestCase): + + def test_initial_global_state_type(self): + + query = tree_aggregation_query.CentralTreeSumQuery(stddev=NOISE_STD) + global_state = query.initial_global_state() + self.assertIsInstance( + global_state, tree_aggregation_query.CentralTreeSumQuery.GlobalState) + + def test_derive_sample_params(self): + query = tree_aggregation_query.CentralTreeSumQuery(stddev=NOISE_STD) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + self.assertAllClose(params, 10.) + + @parameterized.named_parameters( + ('binary_test_int', 2, tf.constant([1, 0, 0, 0], dtype=tf.int32)), + ('binary_test_float', 2, tf.constant([1., 0., 0., 0.], dtype=tf.float32)), + ('ternary_test_int', 3, tf.constant([1, 0, 0, 0], dtype=tf.int32)), + ('ternary_test_float', 3, tf.constant([1., 0., 0., 0.], + dtype=tf.float32)), + ) + def test_preprocess_record(self, arity, record): + query = tree_aggregation_query.CentralTreeSumQuery( + stddev=NOISE_STD, arity=arity) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + + self.assertAllClose(preprocessed_record, record) + + @parameterized.named_parameters( + ('binary_test_int', 2, tf.constant([10, 10, 0, 0], dtype=tf.int32), + tf.constant([5, 5, 0, 0], dtype=tf.int32)), + ('binary_test_float', 2, tf.constant( + [10., 10., 0., 0.], + dtype=tf.float32), tf.constant([5., 5., 0., 0.], dtype=tf.float32)), + ('ternary_test_int', 3, tf.constant([10, 10, 0, 0], dtype=tf.int32), + tf.constant([5, 5, 0, 0], dtype=tf.int32)), + ('ternary_test_float', 3, tf.constant([10., 10., 0., 0.], + dtype=tf.float32), + tf.constant([5., 5., 0., 0.], dtype=tf.float32)), + ) + def test_preprocess_record_clipped(self, arity, record, + expected_clipped_value): + query = tree_aggregation_query.CentralTreeSumQuery( + stddev=NOISE_STD, arity=arity) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + self.assertAllClose(preprocessed_record, expected_clipped_value) + + @parameterized.named_parameters( + ('binary_test_int', 2, tf.constant([1, 0, 0, 0], dtype=tf.int32), + tf.ragged.constant([[1.], [1., 0.], [1., 0., 0., 0.]])), + ('binary_test_float', 2, tf.constant([1., 0., 0., 0.], dtype=tf.float32), + tf.ragged.constant([[1.], [1., 0.], [1., 0., 0., 0.]])), + ('ternary_test_int', 3, tf.constant([1, 0, 0, 0], dtype=tf.int32), + tf.ragged.constant([[1.], [1., 0., 0.], + [1., 0., 0., 0., 0., 0., 0., 0., 0.]])), + ('ternary_test_float', 3, tf.constant([1., 0., 0., 0.], dtype=tf.float32), + tf.ragged.constant([[1.], [1., 0., 0.], + [1., 0., 0., 0., 0., 0., 0., 0., 0.]])), + ) + def test_get_noised_result(self, arity, record, expected_tree): + query = tree_aggregation_query.CentralTreeSumQuery(stddev=0., arity=arity) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + sample_state, global_state = query.get_noised_result( + preprocessed_record, global_state) + + self.assertAllClose(sample_state, expected_tree) + + @parameterized.named_parameters( + ('stddev_0_01', 0.01, tf.constant([1, 0], dtype=tf.int32), [1., 1., 0.]), + ('stddev_0_1', 0.1, tf.constant([1, 0], dtype=tf.int32), [1., 1., 0.]), + ) + def test_get_noised_result_with_noise(self, stddev, record, expected_tree): + query = tree_aggregation_query.CentralTreeSumQuery(stddev=stddev, seed=0) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + + sample_state, _ = query.get_noised_result(preprocessed_record, global_state) + + self.assertAllClose( + sample_state.flat_values, expected_tree, atol=3 * stddev) + + @parameterized.named_parameters( + ('binary_test_int', 2, tf.constant([10, 10, 0, 0], dtype=tf.int32), + tf.ragged.constant([[10.], [10., 0.], [5., 5., 0., 0.]])), + ('binary_test_float', 2, tf.constant([10., 10., 0., 0.], + dtype=tf.float32), + tf.ragged.constant([[10.], [10., 0.], [5., 5., 0., 0.]])), + ('ternary_test_int', 3, tf.constant([10, 10, 0, 0], dtype=tf.int32), + tf.ragged.constant([[10.], [10., 0., 0.], + [5., 5., 0., 0., 0., 0., 0., 0., 0.]])), + ('ternary_test_float', 3, tf.constant([10., 10., 0., 0.], + dtype=tf.float32), + tf.ragged.constant([[10.], [10., 0., 0.], + [5., 5., 0., 0., 0., 0., 0., 0., 0.]])), + ) + def test_get_noised_result_clipped(self, arity, record, expected_tree): + query = tree_aggregation_query.CentralTreeSumQuery(stddev=0., arity=arity) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + sample_state, global_state = query.get_noised_result( + preprocessed_record, global_state) + + self.assertAllClose(sample_state, expected_tree) + + +class DistributedTreeSumQueryTest(tf.test.TestCase, parameterized.TestCase): + + def test_initial_global_state_type(self): + + query = tree_aggregation_query.DistributedTreeSumQuery(stddev=NOISE_STD) + global_state = query.initial_global_state() + self.assertIsInstance( + global_state, + tree_aggregation_query.DistributedTreeSumQuery.GlobalState) + + def test_derive_sample_params(self): + query = tree_aggregation_query.DistributedTreeSumQuery(stddev=NOISE_STD) + global_state = query.initial_global_state() + stddev, arity, l1_bound = query.derive_sample_params(global_state) + self.assertAllClose(stddev, NOISE_STD) + self.assertAllClose(arity, 2) + self.assertAllClose(l1_bound, 10) + + @parameterized.named_parameters( + ('binary_test_int', 2, tf.constant([1, 0, 0, 0], dtype=tf.int32), + tf.ragged.constant([1., 1., 0., 1., 0., 0., 0.])), + ('binary_test_float', 2, tf.constant([1., 0., 0., 0.], dtype=tf.float32), + tf.ragged.constant([1., 1., 0., 1., 0., 0., 0.])), + ('ternary_test_int', 3, tf.constant([1, 0, 0, 0], dtype=tf.int32), + tf.ragged.constant([1., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0. + ])), + ('ternary_test_float', 3, tf.constant([1., 0., 0., 0.], dtype=tf.float32), + tf.ragged.constant([1., 1., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0. + ])), + ) + def test_preprocess_record(self, arity, record, expected_tree): + query = tree_aggregation_query.DistributedTreeSumQuery( + stddev=0., arity=arity) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + self.assertAllClose(preprocessed_record, expected_tree) + + @parameterized.named_parameters( + ('stddev_0_01', 0.01, tf.constant([1, 0], dtype=tf.int32), [1., 1., 0.]), + ('stddev_0_1', 0.1, tf.constant([1, 0], dtype=tf.int32), [1., 1., 0.]), + ) + def test_preprocess_record_with_noise(self, stddev, record, expected_tree): + query = tree_aggregation_query.DistributedTreeSumQuery( + stddev=stddev, seed=0) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + + preprocessed_record = query.preprocess_record(params, record) + + self.assertAllClose(preprocessed_record, expected_tree, atol=3 * stddev) + + @parameterized.named_parameters( + ('binary_test_int', 2, tf.constant([10, 10, 0, 0], dtype=tf.int32), + tf.ragged.constant([10., 10., 0., 5., 5., 0., 0.])), + ('binary_test_float', 2, tf.constant([10., 10., 0., 0.], + dtype=tf.float32), + tf.ragged.constant([10., 10., 0., 5., 5., 0., 0.])), + ('ternary_test_int', 3, tf.constant([10, 10, 0, 0], dtype=tf.int32), + tf.ragged.constant( + [10., 10., 0., 0., 5., 5., 0., 0., 0., 0., 0., 0., 0.])), + ('ternary_test_float', 3, tf.constant([10., 10., 0., 0.], + dtype=tf.float32), + tf.ragged.constant( + [10., 10., 0., 0., 5., 5., 0., 0., 0., 0., 0., 0., 0.])), + ) + def test_preprocess_record_clipped(self, arity, record, expected_tree): + query = tree_aggregation_query.DistributedTreeSumQuery( + stddev=0., arity=arity) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + self.assertAllClose(preprocessed_record, expected_tree) + + @parameterized.named_parameters( + ('binary_test_int', 2, tf.constant([1, 0, 0, 0], dtype=tf.int32), + tf.ragged.constant([[1.], [1., 0.], [1., 0., 0., 0.]])), + ('binary_test_float', 2, tf.constant([1., 0., 0., 0.], dtype=tf.float32), + tf.ragged.constant([[1.], [1., 0.], [1., 0., 0., 0.]])), + ('ternary_test_int', 3, tf.constant([1, 0, 0, 0], dtype=tf.int32), + tf.ragged.constant([[1.], [1., 0., 0.], + [1., 0., 0., 0., 0., 0., 0., 0., 0.]])), + ('ternary_test_float', 3, tf.constant([1., 0., 0., 0.], dtype=tf.float32), + tf.ragged.constant([[1.], [1., 0., 0.], + [1., 0., 0., 0., 0., 0., 0., 0., 0.]])), + ) + def test_get_noised_result(self, arity, record, expected_tree): + query = tree_aggregation_query.DistributedTreeSumQuery( + stddev=0., arity=arity) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + sample_state, global_state = query.get_noised_result( + preprocessed_record, global_state) + + self.assertAllClose(sample_state, expected_tree) + + @parameterized.named_parameters( + ('binary_test_int', 2, tf.constant([10, 10, 0, 0], dtype=tf.int32), + tf.ragged.constant([[10.], [10., 0.], [5., 5., 0., 0.]])), + ('binary_test_float', 2, tf.constant([10., 10., 0., 0.], + dtype=tf.float32), + tf.ragged.constant([[10.], [10., 0.], [5., 5., 0., 0.]])), + ('ternary_test_int', 3, tf.constant([10, 10, 0, 0], dtype=tf.int32), + tf.ragged.constant([[10.], [10., 0., 0.], + [5., 5., 0., 0., 0., 0., 0., 0., 0.]])), + ('ternary_test_float', 3, tf.constant([10., 10., 0., 0.], + dtype=tf.float32), + tf.ragged.constant([[10.], [10., 0., 0.], + [5., 5., 0., 0., 0., 0., 0., 0., 0.]])), + ) + def test_get_noised_result_clipped(self, arity, record, expected_tree): + query = tree_aggregation_query.DistributedTreeSumQuery( + stddev=0., arity=arity) + global_state = query.initial_global_state() + params = query.derive_sample_params(global_state) + preprocessed_record = query.preprocess_record(params, record) + sample_state, global_state = query.get_noised_result( + preprocessed_record, global_state) + + self.assertAllClose(sample_state, expected_tree) + + if __name__ == '__main__': tf.test.main()