Move mpmath dependency to unittest target that uses it, and explicit import of mpmath functions to reduce size.

PiperOrigin-RevId: 239056360
This commit is contained in:
Galen Andrew 2019-03-18 14:03:19 -07:00 committed by A. Unique TensorFlower
parent a1e9ca2a18
commit 0aad84ab3f

View file

@ -22,7 +22,11 @@ import sys
from absl.testing import absltest from absl.testing import absltest
from absl.testing import parameterized from absl.testing import parameterized
import mpmath as mp from mpmath import exp
from mpmath import inf
from mpmath import log
from mpmath import npdf
from mpmath import quad
import numpy as np import numpy as np
from privacy.analysis import rdp_accountant from privacy.analysis import rdp_accountant
@ -38,21 +42,21 @@ class TestGaussianMoments(parameterized.TestCase):
def _log_float_mp(self, x): def _log_float_mp(self, x):
# Convert multi-precision input to float log space. # Convert multi-precision input to float log space.
if x >= sys.float_info.min: if x >= sys.float_info.min:
return float(mp.log(x)) return float(log(x))
else: else:
return -np.inf return -np.inf
def _integral_mp(self, fn, bounds=(-mp.inf, mp.inf)): def _integral_mp(self, fn, bounds=(-inf, inf)):
integral, _ = mp.quad(fn, bounds, error=True, maxdegree=8) integral, _ = quad(fn, bounds, error=True, maxdegree=8)
return integral return integral
def _distributions_mp(self, sigma, q): def _distributions_mp(self, sigma, q):
def _mu0(x): def _mu0(x):
return mp.npdf(x, mu=0, sigma=sigma) return npdf(x, mu=0, sigma=sigma)
def _mu1(x): def _mu1(x):
return mp.npdf(x, mu=1, sigma=sigma) return npdf(x, mu=1, sigma=sigma)
def _mu(x): def _mu(x):
return (1 - q) * _mu0(x) + q * _mu1(x) return (1 - q) * _mu0(x) + q * _mu1(x)
@ -61,7 +65,7 @@ class TestGaussianMoments(parameterized.TestCase):
def _mu1_over_mu0(self, x, sigma): def _mu1_over_mu0(self, x, sigma):
# Closed-form expression for N(1, sigma^2) / N(0, sigma^2) at x. # Closed-form expression for N(1, sigma^2) / N(0, sigma^2) at x.
return mp.exp((2 * x - 1) / (2 * sigma**2)) return exp((2 * x - 1) / (2 * sigma**2))
def _mu_over_mu0(self, x, q, sigma): def _mu_over_mu0(self, x, q, sigma):
return (1 - q) + q * self._mu1_over_mu0(x, sigma) return (1 - q) + q * self._mu1_over_mu0(x, sigma)