diff --git a/tensorflow_privacy/privacy/analysis/GDprivacy_accountants.py b/tensorflow_privacy/privacy/analysis/GDprivacy_accountants.py deleted file mode 100644 index ba56dac..0000000 --- a/tensorflow_privacy/privacy/analysis/GDprivacy_accountants.py +++ /dev/null @@ -1,59 +0,0 @@ -# Copyright 2015 The TensorFlow Authors. All Rights Reserved. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# ============================================================================= - -r"""This code applies the Dual and Central Limit -Theorem (CLT) to estimate privacy budget of an iterated subsampled -Gaussian Mechanism (by either uniform or Poisson subsampling). -""" - - -import numpy as np -from scipy.stats import norm -from scipy import optimize - -# Total number of examples:N -# batch size:batch_size -# Noise multiplier for DP-SGD/DP-Adam:noise_multiplier -# current epoch:epoch -# Target delta:delta - -# Compute mu from uniform subsampling -def compute_muU(epoch,noise_multi,N,batch_size): - T=epoch*N/batch_size - c=batch_size*np.sqrt(T)/N - return(np.sqrt(2)*c*np.sqrt(np.exp(noise_multi**(-2))*norm.cdf(1.5/noise_multi)+3*norm.cdf(-0.5/noise_multi)-2)) - -# Compute mu from Poisson subsampling -def compute_muP(epoch,noise_multi,N,batch_size): - T=epoch*N/batch_size - return(np.sqrt(np.exp(noise_multi**(-2))-1)*np.sqrt(T)*batch_size/N) - -# Dual between mu-GDP and (epsilon,delta)-DP -def delta_eps_mu(eps,mu): - return norm.cdf(-eps/mu+mu/2)-np.exp(eps)*norm.cdf(-eps/mu-mu/2) - -# inverse Dual -def eps_from_mu(mu,delta): - def f(x): - return delta_eps_mu(x,mu)-delta - return optimize.root_scalar(f, bracket=[0, 500], method='brentq').root - -# inverse Dual of uniform subsampling -def compute_epsU(epoch,noise_multi,N,batch_size,delta): - return(eps_from_mu(compute_muU(epoch,noise_multi,N,batch_size),delta)) - -# inverse Dual of Poisson subsampling -def compute_epsP(epoch,noise_multi,N,batch_size,delta): - return(eps_from_mu(compute_muP(epoch,noise_multi,N,batch_size),delta)) \ No newline at end of file