Add optional argument for weighted sum and weighted average queries.

PiperOrigin-RevId: 230021515
This commit is contained in:
Peter Kairouz 2019-01-18 17:25:41 -08:00 committed by A. Unique TensorFlower
parent 047e1eef0e
commit 0b56f7c016
2 changed files with 52 additions and 17 deletions

View file

@ -44,10 +44,14 @@ class NoPrivacySumQuery(private_queries.PrivateSumQuery):
del global_state # unused.
return nest.map_structure(tf.zeros_like, tensors)
def accumulate_record(self, params, sample_state, record):
"""See base class."""
def accumulate_record(self, params, sample_state, record, weight=1):
"""See base class. Optional argument for weighted sum queries."""
del params # unused.
return nest.map_structure(tf.add, sample_state, record)
def add_weighted(state_tensor, record_tensor):
return tf.add(state_tensor, weight * record_tensor)
return nest.map_structure(add_weighted, sample_state, record)
def get_noised_sum(self, sample_state, global_state):
"""See base class."""
@ -77,11 +81,13 @@ class NoPrivacyAverageQuery(private_queries.PrivateAverageQuery):
"""See base class."""
return self._numerator.initial_sample_state(global_state, tensors), 0.0
def accumulate_record(self, params, sample_state, record):
"""See base class."""
def accumulate_record(self, params, sample_state, record, weight=1):
"""See base class. Optional argument for weighted average queries."""
sum_sample_state, denominator = sample_state
return self._numerator.accumulate_record(params, sum_sample_state,
record), tf.add(denominator, 1.0)
return (
self._numerator.accumulate_record(
params, sum_sample_state, record, weight),
tf.add(denominator, weight))
def get_noised_average(self, sample_state, global_state):
"""See base class."""

View file

@ -23,18 +23,14 @@ import tensorflow as tf
from privacy.optimizers import no_privacy_query
try:
xrange
except NameError:
xrange = range
def _run_query(query, records):
def _run_query(query, records, weights=None):
"""Executes query on the given set of records as a single sample.
Args:
query: A PrivateQuery to run.
records: An iterable containing records to pass to the query.
weights: An optional iterable containing the weights of the records.
Returns:
The result of the query.
@ -42,8 +38,13 @@ def _run_query(query, records):
global_state = query.initial_global_state()
params = query.derive_sample_params(global_state)
sample_state = query.initial_sample_state(global_state, next(iter(records)))
if weights is None:
for record in records:
sample_state = query.accumulate_record(params, sample_state, record)
else:
for weight, record in zip(weights, records):
sample_state = query.accumulate_record(params, sample_state, record,
weight)
result, _ = query.get_query_result(sample_state, global_state)
return result
@ -61,6 +62,20 @@ class NoPrivacyQueryTest(tf.test.TestCase, parameterized.TestCase):
expected = [1.0, 1.0]
self.assertAllClose(result, expected)
def test_no_privacy_weighted_sum(self):
with self.cached_session() as sess:
record1 = tf.constant([2.0, 0.0])
record2 = tf.constant([-1.0, 1.0])
weight1 = 1
weight2 = 2
query = no_privacy_query.NoPrivacySumQuery()
query_result = _run_query(query, [record1, record2], [weight1, weight2])
result = sess.run(query_result)
expected = [0.0, 2.0]
self.assertAllClose(result, expected)
def test_no_privacy_average(self):
with self.cached_session() as sess:
record1 = tf.constant([5.0, 0.0])
@ -69,8 +84,22 @@ class NoPrivacyQueryTest(tf.test.TestCase, parameterized.TestCase):
query = no_privacy_query.NoPrivacyAverageQuery()
query_result = _run_query(query, [record1, record2])
result = sess.run(query_result)
expected_average = [2.0, 1.0]
self.assertAllClose(result, expected_average)
expected = [2.0, 1.0]
self.assertAllClose(result, expected)
def test_no_privacy_weighted_average(self):
with self.cached_session() as sess:
record1 = tf.constant([4.0, 0.0])
record2 = tf.constant([-1.0, 1.0])
weight1 = 1
weight2 = 3
query = no_privacy_query.NoPrivacyAverageQuery()
query_result = _run_query(query, [record1, record2], [weight1, weight2])
result = sess.run(query_result)
expected = [0.25, 0.75]
self.assertAllClose(result, expected)
@parameterized.named_parameters(
('type_mismatch', [1.0], (1.0,), TypeError),