Merge pull request #70 from georgianpartners:master
PiperOrigin-RevId: 265056745
This commit is contained in:
commit
0e84af1e69
6 changed files with 55 additions and 41 deletions
|
@ -42,6 +42,16 @@ delta-epsilon privacy in machine learning, some of which can be explored here:
|
|||
https://medium.com/apache-mxnet/epsilon-differential-privacy-for-machine-learning-using-mxnet-a4270fe3865e
|
||||
https://arxiv.org/pdf/1811.04911.pdf
|
||||
|
||||
## Stability
|
||||
|
||||
As we are pegged on tensorflow2.0, this package may encounter stability
|
||||
issues in the ongoing development of tensorflow2.0.
|
||||
|
||||
This sub-package is currently stable for 2.0.0a0, 2.0.0b0, and 2.0.0.b1 If you
|
||||
would like to use this subpackage, please do use one of these versions as we
|
||||
cannot guarantee it will work for all latest releases. If you do find issues,
|
||||
feel free to raise an issue to the contributors listed below.
|
||||
|
||||
## Contacts
|
||||
|
||||
In addition to the maintainers of tensorflow/privacy listed in the root
|
||||
|
|
|
@ -217,9 +217,11 @@ class BoltOnModel(Model): # pylint: disable=abstract-method
|
|||
elif hasattr(generator, '__len__'):
|
||||
data_size = len(generator)
|
||||
else:
|
||||
data_size = None
|
||||
batch_size = self._validate_or_infer_batch_size(None,
|
||||
steps_per_epoch,
|
||||
raise ValueError('The number of samples could not be determined. '
|
||||
'Please make sure that if you are using a generator'
|
||||
'to call this method directly with n_samples kwarg '
|
||||
'passed.')
|
||||
batch_size = self._validate_or_infer_batch_size(None, steps_per_epoch,
|
||||
generator)
|
||||
if batch_size is None:
|
||||
batch_size = 32
|
||||
|
|
|
@ -294,6 +294,12 @@ def _do_fit(n_samples,
|
|||
# x = x.batch(batch_size)
|
||||
x = x.shuffle(n_samples//2)
|
||||
batch_size = None
|
||||
if reset_n_samples:
|
||||
n_samples = None
|
||||
clf.fit_generator(x,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
else:
|
||||
x, y = _cat_dataset(
|
||||
n_samples,
|
||||
|
@ -301,15 +307,14 @@ def _do_fit(n_samples,
|
|||
n_outputs,
|
||||
batch_size,
|
||||
generator=generator)
|
||||
if reset_n_samples:
|
||||
n_samples = None
|
||||
|
||||
clf.fit(x,
|
||||
y,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
if reset_n_samples:
|
||||
n_samples = None
|
||||
clf.fit(x,
|
||||
y,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
return clf
|
||||
|
||||
|
||||
|
|
|
@ -129,18 +129,19 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
if not isinstance(loss, StrongConvexMixin):
|
||||
raise ValueError('loss function must be a Strongly Convex and therefore '
|
||||
'extend the StrongConvexMixin.')
|
||||
self._private_attributes = ['_internal_optimizer',
|
||||
'dtype',
|
||||
'noise_distribution',
|
||||
'epsilon',
|
||||
'loss',
|
||||
'class_weights',
|
||||
'input_dim',
|
||||
'n_samples',
|
||||
'layers',
|
||||
'batch_size',
|
||||
'_is_init'
|
||||
]
|
||||
self._private_attributes = [
|
||||
'_internal_optimizer',
|
||||
'dtype',
|
||||
'noise_distribution',
|
||||
'epsilon',
|
||||
'loss',
|
||||
'class_weights',
|
||||
'input_dim',
|
||||
'n_samples',
|
||||
'layers',
|
||||
'batch_size',
|
||||
'_is_init',
|
||||
]
|
||||
self._internal_optimizer = optimizer
|
||||
self.learning_rate = GammaBetaDecreasingStep() # use the BoltOn Learning
|
||||
# rate scheduler, as required for privacy guarantees. This will still need
|
||||
|
@ -250,8 +251,7 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
"Neither '{0}' nor '{1}' object has attribute '{2}'"
|
||||
"".format(self.__class__.__name__,
|
||||
self._internal_optimizer.__class__.__name__,
|
||||
name
|
||||
)
|
||||
name)
|
||||
)
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
|
@ -319,8 +319,7 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
layers,
|
||||
class_weights,
|
||||
n_samples,
|
||||
batch_size
|
||||
):
|
||||
batch_size):
|
||||
"""Accepts required values for bolton method from context entry point.
|
||||
|
||||
Stores them on the optimizer for use throughout fitting.
|
||||
|
@ -347,8 +346,7 @@ class BoltOn(optimizer_v2.OptimizerV2):
|
|||
_accepted_distributions))
|
||||
self.noise_distribution = noise_distribution
|
||||
self.learning_rate.initialize(self.loss.beta(class_weights),
|
||||
self.loss.gamma()
|
||||
)
|
||||
self.loss.gamma())
|
||||
self.epsilon = tf.constant(epsilon, dtype=self.dtype)
|
||||
self.class_weights = tf.constant(class_weights, dtype=self.dtype)
|
||||
self.n_samples = tf.constant(n_samples, dtype=self.dtype)
|
||||
|
|
|
@ -17,6 +17,7 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from absl.testing import parameterized
|
||||
import tensorflow as tf
|
||||
from tensorflow.python import ops as _ops
|
||||
|
@ -270,7 +271,6 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
result: the expected output after projection.
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
@tf.function
|
||||
def project_fn(r):
|
||||
loss = TestLoss(1, 1, r)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
|
@ -358,7 +358,8 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
{'testcase_name': 'fn: get_noise',
|
||||
'fn': 'get_noise',
|
||||
'args': [1, 1],
|
||||
'err_msg': 'ust be called from within the optimizer\'s context'},
|
||||
'err_msg': 'This method must be called from within the '
|
||||
'optimizer\'s context'},
|
||||
])
|
||||
def test_not_in_context(self, fn, args, err_msg):
|
||||
"""Tests that the expected functions raise errors when not in context.
|
||||
|
@ -368,7 +369,6 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
args: the arguments for said function
|
||||
err_msg: expected error message
|
||||
"""
|
||||
@tf.function
|
||||
def test_run(fn, args):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
|
@ -462,7 +462,6 @@ class BoltonOptimizerTest(keras_parameterized.TestCase):
|
|||
fn: fn to test
|
||||
args: arguments to that fn
|
||||
"""
|
||||
@tf.function
|
||||
def test_run(fn, args):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
|
@ -577,3 +576,4 @@ class SchedulerTest(keras_parameterized.TestCase):
|
|||
|
||||
if __name__ == '__main__':
|
||||
test.main()
|
||||
unittest.main()
|
||||
|
|
|
@ -124,13 +124,12 @@ except ValueError as e:
|
|||
# And now, re running with the parameter set.
|
||||
# -------
|
||||
n_samples = 20
|
||||
bolt.fit(generator,
|
||||
epsilon=epsilon,
|
||||
class_weight=class_weight,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
verbose=0)
|
||||
bolt.fit_generator(generator,
|
||||
epsilon=epsilon,
|
||||
class_weight=class_weight,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=noise_distribution,
|
||||
verbose=0)
|
||||
# -------
|
||||
# You don't have to use the BoltOn model to use the BoltOn method.
|
||||
# There are only a few requirements:
|
||||
|
|
Loading…
Reference in a new issue