commit
136200d0c2
18 changed files with 146 additions and 102 deletions
|
@ -57,6 +57,10 @@ GitHub pull requests. To speed the code review process, we ask that:
|
|||
your pull requests. In most cases this can be done by running `autopep8 -i
|
||||
--indent-size 2 <file>` on the files you have edited.
|
||||
|
||||
* You should also check your code with pylint and TensorFlow's pylint
|
||||
[configuration file](https://raw.githubusercontent.com/tensorflow/tensorflow/master/tensorflow/tools/ci_build/pylintrc)
|
||||
by running `pylint --rcfile=/path/to/the/tf/rcfile <edited file.py>`.
|
||||
|
||||
* When making your first pull request, you
|
||||
[sign the Google CLA](https://cla.developers.google.com/clas)
|
||||
|
||||
|
|
|
@ -9,6 +9,7 @@ py_library(
|
|||
srcs = ["__init__.py"],
|
||||
deps = [
|
||||
"//third_party/py/tensorflow_privacy/privacy/analysis:privacy_ledger",
|
||||
"//third_party/py/tensorflow_privacy/privacy/analysis:rdp_accountant",
|
||||
"//third_party/py/tensorflow_privacy/privacy/dp_query",
|
||||
"//third_party/py/tensorflow_privacy/privacy/dp_query:gaussian_query",
|
||||
"//third_party/py/tensorflow_privacy/privacy/dp_query:nested_query",
|
||||
|
|
|
@ -13,6 +13,10 @@
|
|||
# limitations under the License.
|
||||
"""TensorFlow Privacy library."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
|
||||
# pylint: disable=g-import-not-at-top
|
||||
|
@ -42,8 +46,11 @@ else:
|
|||
from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||
from privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer
|
||||
|
||||
from privacy.bolt_on.models import BoltOnModel
|
||||
from privacy.bolt_on.optimizers import BoltOn
|
||||
from privacy.bolt_on.losses import StrongConvexMixin
|
||||
from privacy.bolt_on.losses import StrongConvexBinaryCrossentropy
|
||||
from privacy.bolt_on.losses import StrongConvexHuber
|
||||
try:
|
||||
from privacy.bolt_on.models import BoltOnModel
|
||||
from privacy.bolt_on.optimizers import BoltOn
|
||||
from privacy.bolt_on.losses import StrongConvexMixin
|
||||
from privacy.bolt_on.losses import StrongConvexBinaryCrossentropy
|
||||
from privacy.bolt_on.losses import StrongConvexHuber
|
||||
except ImportError:
|
||||
print('module `bolt_on` was not found in this version of TF Privacy')
|
||||
|
|
|
@ -61,6 +61,10 @@ flags.mark_flag_as_required('epochs')
|
|||
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
|
||||
"""Compute and print results of DP-SGD analysis."""
|
||||
|
||||
# compute_rdp requires that sigma be the ratio of the standard deviation of
|
||||
# the Gaussian noise to the l2-sensitivity of the function to which it is
|
||||
# added. Hence, sigma here corresponds to the `noise_multiplier` parameter
|
||||
# in the DP-SGD implementation found in privacy.optimizers.dp_optimizer
|
||||
rdp = compute_rdp(q, sigma, steps, orders)
|
||||
|
||||
eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta)
|
||||
|
@ -80,13 +84,10 @@ def main(argv):
|
|||
del argv # argv is not used.
|
||||
|
||||
q = FLAGS.batch_size / FLAGS.N # q - the sampling ratio.
|
||||
|
||||
if q > 1:
|
||||
raise app.UsageError('N must be larger than the batch size.')
|
||||
|
||||
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] +
|
||||
list(range(5, 64)) + [128, 256, 512])
|
||||
|
||||
steps = int(math.ceil(FLAGS.epochs * FLAGS.N / FLAGS.batch_size))
|
||||
|
||||
apply_dp_sgd_analysis(q, FLAGS.noise_multiplier, steps, orders, FLAGS.delta)
|
||||
|
|
|
@ -226,9 +226,9 @@ class QueryWithLedger(dp_query.DPQuery):
|
|||
"""See base class."""
|
||||
return self._query.derive_sample_params(global_state)
|
||||
|
||||
def initial_sample_state(self, global_state, template):
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
return self._query.initial_sample_state(global_state, template)
|
||||
return self._query.initial_sample_state(template)
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
"""See base class."""
|
||||
|
|
|
@ -26,6 +26,7 @@ py_test(
|
|||
name = "gaussian_query_test",
|
||||
size = "small",
|
||||
srcs = ["gaussian_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":gaussian_query",
|
||||
":test_utils",
|
||||
|
@ -50,6 +51,7 @@ py_test(
|
|||
name = "no_privacy_query_test",
|
||||
size = "small",
|
||||
srcs = ["no_privacy_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":no_privacy_query",
|
||||
":test_utils",
|
||||
|
@ -72,6 +74,7 @@ py_test(
|
|||
name = "normalized_query_test",
|
||||
size = "small",
|
||||
srcs = ["normalized_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":gaussian_query",
|
||||
":normalized_query",
|
||||
|
@ -94,6 +97,7 @@ py_test(
|
|||
name = "nested_query_test",
|
||||
size = "small",
|
||||
srcs = ["nested_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":gaussian_query",
|
||||
":nested_query",
|
||||
|
@ -119,6 +123,7 @@ py_library(
|
|||
py_test(
|
||||
name = "quantile_adaptive_clip_sum_query_test",
|
||||
srcs = ["quantile_adaptive_clip_sum_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":quantile_adaptive_clip_sum_query",
|
||||
":test_utils",
|
||||
|
|
|
@ -88,11 +88,10 @@ class DPQuery(object):
|
|||
return ()
|
||||
|
||||
@abc.abstractmethod
|
||||
def initial_sample_state(self, global_state, template):
|
||||
def initial_sample_state(self, template):
|
||||
"""Returns an initial state to use for the next sample.
|
||||
|
||||
Args:
|
||||
global_state: The current global state.
|
||||
template: A nested structure of tensors, TensorSpecs, or numpy arrays used
|
||||
as a template to create the initial sample state. It is assumed that the
|
||||
leaves of the structure are python scalars or some type that has
|
||||
|
@ -216,8 +215,7 @@ def zeros_like(arg):
|
|||
class SumAggregationDPQuery(DPQuery):
|
||||
"""Base class for DPQueries that aggregate via sum."""
|
||||
|
||||
def initial_sample_state(self, global_state, template):
|
||||
del global_state # unused.
|
||||
def initial_sample_state(self, template):
|
||||
return nest.map_structure(zeros_like, template)
|
||||
|
||||
def accumulate_preprocessed_record(self, sample_state, preprocessed_record):
|
||||
|
|
|
@ -69,7 +69,7 @@ class GaussianSumQuery(dp_query.SumAggregationDPQuery):
|
|||
def derive_sample_params(self, global_state):
|
||||
return global_state.l2_norm_clip
|
||||
|
||||
def initial_sample_state(self, global_state, template):
|
||||
def initial_sample_state(self, template):
|
||||
return nest.map_structure(
|
||||
dp_query.zeros_like, template)
|
||||
|
||||
|
|
|
@ -99,7 +99,7 @@ class GaussianQueryTest(tf.test.TestCase, parameterized.TestCase):
|
|||
query = gaussian_query.GaussianSumQuery(l2_norm_clip=10.0, stddev=1.0)
|
||||
global_state = query.initial_global_state()
|
||||
params = query.derive_sample_params(global_state)
|
||||
sample_state = query.initial_sample_state(global_state, records[0])
|
||||
sample_state = query.initial_sample_state(records[0])
|
||||
for record in records:
|
||||
sample_state = query.accumulate_record(params, sample_state, record)
|
||||
return sample_state
|
||||
|
|
|
@ -73,9 +73,9 @@ class NestedQuery(dp_query.DPQuery):
|
|||
"""See base class."""
|
||||
return self._map_to_queries('derive_sample_params', global_state)
|
||||
|
||||
def initial_sample_state(self, global_state, template):
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
return self._map_to_queries('initial_sample_state', global_state, template)
|
||||
return self._map_to_queries('initial_sample_state', template)
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
"""See base class."""
|
||||
|
|
|
@ -45,12 +45,10 @@ class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery):
|
|||
Accumulates vectors and normalizes by the total number of accumulated vectors.
|
||||
"""
|
||||
|
||||
def initial_sample_state(self, global_state, template):
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
return (
|
||||
super(NoPrivacyAverageQuery, self).initial_sample_state(
|
||||
global_state, template),
|
||||
tf.constant(0.0))
|
||||
return (super(NoPrivacyAverageQuery, self).initial_sample_state(template),
|
||||
tf.constant(0.0))
|
||||
|
||||
def preprocess_record(self, params, record, weight=1):
|
||||
"""Multiplies record by weight."""
|
||||
|
|
|
@ -68,11 +68,10 @@ class NormalizedQuery(dp_query.DPQuery):
|
|||
"""See base class."""
|
||||
return self._numerator.derive_sample_params(global_state.numerator_state)
|
||||
|
||||
def initial_sample_state(self, global_state, template):
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
# NormalizedQuery has no sample state beyond the numerator state.
|
||||
return self._numerator.initial_sample_state(
|
||||
global_state.numerator_state, template)
|
||||
return self._numerator.initial_sample_state(template)
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
return self._numerator.preprocess_record(params, record)
|
||||
|
|
|
@ -26,6 +26,7 @@ from __future__ import division
|
|||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
@ -33,7 +34,10 @@ from privacy.dp_query import dp_query
|
|||
from privacy.dp_query import gaussian_query
|
||||
from privacy.dp_query import normalized_query
|
||||
|
||||
nest = tf.contrib.framework.nest
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
class QuantileAdaptiveClipSumQuery(dp_query.DPQuery):
|
||||
|
@ -144,12 +148,11 @@ class QuantileAdaptiveClipSumQuery(dp_query.DPQuery):
|
|||
global_state.clipped_fraction_state)
|
||||
return self._SampleParams(sum_params, clipped_fraction_params)
|
||||
|
||||
def initial_sample_state(self, global_state, template):
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
sum_state = self._sum_query.initial_sample_state(
|
||||
global_state.sum_state, template)
|
||||
sum_state = self._sum_query.initial_sample_state(template)
|
||||
clipped_fraction_state = self._clipped_fraction_query.initial_sample_state(
|
||||
global_state.clipped_fraction_state, tf.constant(0.0))
|
||||
tf.constant(0.0))
|
||||
return self._SampleState(sum_state, clipped_fraction_state)
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
|
|
|
@ -38,7 +38,7 @@ def run_query(query, records, global_state=None, weights=None):
|
|||
if not global_state:
|
||||
global_state = query.initial_global_state()
|
||||
params = query.derive_sample_params(global_state)
|
||||
sample_state = query.initial_sample_state(global_state, next(iter(records)))
|
||||
sample_state = query.initial_sample_state(next(iter(records)))
|
||||
if weights is None:
|
||||
for record in records:
|
||||
sample_state = query.accumulate_record(params, sample_state, record)
|
||||
|
|
|
@ -93,10 +93,7 @@ def make_optimizer_class(cls):
|
|||
vector_loss = loss()
|
||||
if self._num_microbatches is None:
|
||||
self._num_microbatches = tf.shape(vector_loss)[0]
|
||||
if isinstance(self._dp_sum_query, privacy_ledger.QueryWithLedger):
|
||||
self._dp_sum_query.set_batch_size(self._num_microbatches)
|
||||
sample_state = self._dp_sum_query.initial_sample_state(
|
||||
self._global_state, var_list)
|
||||
sample_state = self._dp_sum_query.initial_sample_state(var_list)
|
||||
microbatches_losses = tf.reshape(vector_loss,
|
||||
[self._num_microbatches, -1])
|
||||
sample_params = (
|
||||
|
@ -136,8 +133,6 @@ def make_optimizer_class(cls):
|
|||
# sampling from the dataset without replacement.
|
||||
if self._num_microbatches is None:
|
||||
self._num_microbatches = tf.shape(loss)[0]
|
||||
if isinstance(self._dp_sum_query, privacy_ledger.QueryWithLedger):
|
||||
self._dp_sum_query.set_batch_size(self._num_microbatches)
|
||||
|
||||
microbatches_losses = tf.reshape(loss, [self._num_microbatches, -1])
|
||||
sample_params = (
|
||||
|
@ -162,8 +157,7 @@ def make_optimizer_class(cls):
|
|||
tf.trainable_variables() + tf.get_collection(
|
||||
tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
|
||||
|
||||
sample_state = self._dp_sum_query.initial_sample_state(
|
||||
self._global_state, var_list)
|
||||
sample_state = self._dp_sum_query.initial_sample_state(var_list)
|
||||
|
||||
if self._unroll_microbatches:
|
||||
for idx in range(self._num_microbatches):
|
||||
|
|
|
@ -20,6 +20,10 @@ Here is a list of all the tutorials included:
|
|||
* `mnist_dpsgd_tutorial_keras.py`: learn a convolutional neural network on MNIST
|
||||
with differential privacy using tf.Keras.
|
||||
|
||||
* `mnist_lr_tutorial.py`: learn a differentially private logistic regression
|
||||
model on MNIST. The model illustrates application of the
|
||||
"amplification-by-iteration" analysis (https://arxiv.org/abs/1808.06651).
|
||||
|
||||
The rest of this README describes the different parameters used to configure
|
||||
DP-SGD as well as expected outputs for the `mnist_dpsgd_tutorial.py` tutorial.
|
||||
|
||||
|
|
|
@ -41,10 +41,10 @@ flags.DEFINE_float('learning_rate', 0.15, 'Learning rate for training')
|
|||
flags.DEFINE_float('noise_multiplier', 1.1,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_float('l2_norm_clip', 1.0, 'Clipping norm')
|
||||
flags.DEFINE_integer('batch_size', 256, 'Batch size')
|
||||
flags.DEFINE_integer('batch_size', 250, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 60, 'Number of epochs')
|
||||
flags.DEFINE_integer(
|
||||
'microbatches', 256, 'Number of microbatches '
|
||||
'microbatches', 250, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
|
||||
|
@ -121,9 +121,8 @@ def main(unused_argv):
|
|||
optimizer = DPGradientDescentGaussianOptimizer(
|
||||
l2_norm_clip=FLAGS.l2_norm_clip,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=FLAGS.num_microbatches,
|
||||
learning_rate=FLAGS.learning_rate,
|
||||
unroll_microbatches=True)
|
||||
num_microbatches=FLAGS.microbatches,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
# Compute vector of per-example loss rather than its mean over a minibatch.
|
||||
loss = tf.keras.losses.CategoricalCrossentropy(
|
||||
from_logits=True, reduction=tf.losses.Reduction.NONE)
|
||||
|
|
|
@ -11,11 +11,10 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""DP Logistic Regression on MNIST.
|
||||
|
||||
DP Logistic Regression on MNIST with support for privacy-by-iteration analysis.
|
||||
Feldman, Vitaly, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta.
|
||||
Vitaly Feldman, Ilya Mironov, Kunal Talwar, and Abhradeep Thakurta.
|
||||
"Privacy amplification by iteration."
|
||||
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
|
||||
pp. 521-532. IEEE, 2018.
|
||||
|
@ -36,6 +35,8 @@ from distutils.version import LooseVersion
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis.rdp_accountant import compute_rdp
|
||||
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from privacy.optimizers import dp_optimizer
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
|
@ -45,32 +46,30 @@ else:
|
|||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
'train with vanilla SGD.')
|
||||
flags.DEFINE_float('learning_rate', 0.001, 'Learning rate for training')
|
||||
flags.DEFINE_float('noise_multiplier', 0.02,
|
||||
flags.DEFINE_float('noise_multiplier', 0.05,
|
||||
'Ratio of the standard deviation to the clipping norm')
|
||||
flags.DEFINE_integer('batch_size', 1, 'Batch size')
|
||||
flags.DEFINE_integer('batch_size', 5, 'Batch size')
|
||||
flags.DEFINE_integer('epochs', 5, 'Number of epochs')
|
||||
flags.DEFINE_integer('microbatches', 1, 'Number of microbatches '
|
||||
'(must evenly divide batch_size)')
|
||||
flags.DEFINE_float('regularizer', 0, 'L2 regularizer coefficient')
|
||||
flags.DEFINE_string('model_dir', None, 'Model directory')
|
||||
flags.DEFINE_float('data_l2_norm', 8,
|
||||
'Bound on the L2 norm of normalized data.')
|
||||
flags.DEFINE_float('data_l2_norm', 8, 'Bound on the L2 norm of normalized data')
|
||||
|
||||
|
||||
def lr_model_fn(features, labels, mode, nclasses, dim):
|
||||
"""Model function for logistic regression."""
|
||||
input_layer = tf.reshape(features['x'], tuple([-1]) + dim)
|
||||
|
||||
logits = tf.layers.dense(inputs=input_layer,
|
||||
units=nclasses,
|
||||
kernel_regularizer=tf.contrib.layers.l2_regularizer(
|
||||
scale=FLAGS.regularizer),
|
||||
bias_regularizer=tf.contrib.layers.l2_regularizer(
|
||||
scale=FLAGS.regularizer)
|
||||
)
|
||||
logits = tf.layers.dense(
|
||||
inputs=input_layer,
|
||||
units=nclasses,
|
||||
kernel_regularizer=tf.contrib.layers.l2_regularizer(
|
||||
scale=FLAGS.regularizer),
|
||||
bias_regularizer=tf.contrib.layers.l2_regularizer(
|
||||
scale=FLAGS.regularizer))
|
||||
|
||||
# Calculate loss as a vector (to support microbatches in DP-SGD).
|
||||
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
|
||||
|
@ -80,18 +79,15 @@ def lr_model_fn(features, labels, mode, nclasses, dim):
|
|||
|
||||
# Configure the training op (for TRAIN mode).
|
||||
if mode == tf.estimator.ModeKeys.TRAIN:
|
||||
|
||||
if FLAGS.dpsgd:
|
||||
# Use DP version of GradientDescentOptimizer. Other optimizers are
|
||||
# available in dp_optimizer. Most optimizers inheriting from
|
||||
# tf.train.Optimizer should be wrappable in differentially private
|
||||
# counterparts by calling dp_optimizer.optimizer_from_args().
|
||||
# The loss function is L-Lipschitz with L = sqrt(2*(||x||^2 + 1)) where
|
||||
# ||x|| is the norm of the data.
|
||||
# We don't use microbatches (thus speeding up computation), since no
|
||||
# clipping is necessary due to data normalization.
|
||||
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
|
||||
l2_norm_clip=math.sqrt(2*(FLAGS.data_l2_norm**2 + 1)),
|
||||
l2_norm_clip=math.sqrt(2 * (FLAGS.data_l2_norm**2 + 1)),
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
num_microbatches=FLAGS.microbatches,
|
||||
num_microbatches=1,
|
||||
learning_rate=FLAGS.learning_rate)
|
||||
opt_loss = vector_loss
|
||||
else:
|
||||
|
@ -103,21 +99,18 @@ def lr_model_fn(features, labels, mode, nclasses, dim):
|
|||
# the vector_loss because tf.estimator requires a scalar loss. This is only
|
||||
# used for evaluation and debugging by tf.estimator. The actual loss being
|
||||
# minimized is opt_loss defined above and passed to optimizer.minimize().
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
train_op=train_op)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
# Add evaluation metrics (for EVAL mode).
|
||||
elif mode == tf.estimator.ModeKeys.EVAL:
|
||||
eval_metric_ops = {
|
||||
'accuracy':
|
||||
tf.metrics.accuracy(
|
||||
labels=labels,
|
||||
predictions=tf.argmax(input=logits, axis=1))
|
||||
labels=labels, predictions=tf.argmax(input=logits, axis=1))
|
||||
}
|
||||
return tf.estimator.EstimatorSpec(mode=mode,
|
||||
loss=scalar_loss,
|
||||
eval_metric_ops=eval_metric_ops)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, eval_metric_ops=eval_metric_ops)
|
||||
|
||||
|
||||
def normalize_data(data, data_l2_norm):
|
||||
|
@ -146,7 +139,7 @@ def load_mnist(data_l2_norm=float('inf')):
|
|||
train_data = train_data.reshape(train_data.shape[0], -1)
|
||||
test_data = test_data.reshape(test_data.shape[0], -1)
|
||||
|
||||
idx = np.random.permutation(len(train_data)) # shuffle data once
|
||||
idx = np.random.permutation(len(train_data)) # shuffle data once
|
||||
train_data = train_data[idx]
|
||||
train_labels = train_labels[idx]
|
||||
|
||||
|
@ -159,14 +152,50 @@ def load_mnist(data_l2_norm=float('inf')):
|
|||
return train_data, train_labels, test_data, test_labels
|
||||
|
||||
|
||||
def print_privacy_guarantees(epochs, batch_size, samples, noise_multiplier):
|
||||
"""Tabulating position-dependent privacy guarantees."""
|
||||
if noise_multiplier == 0:
|
||||
print('No differential privacy (additive noise is 0).')
|
||||
return
|
||||
|
||||
print('In the conditions of Theorem 34 (https://arxiv.org/abs/1808.06651) '
|
||||
'the training procedure results in the following privacy guarantees.')
|
||||
|
||||
print('Out of the total of {} samples:'.format(samples))
|
||||
|
||||
steps_per_epoch = samples // batch_size
|
||||
orders = np.concatenate(
|
||||
[np.linspace(2, 20, num=181),
|
||||
np.linspace(20, 100, num=81)])
|
||||
delta = 1e-5
|
||||
for p in (.5, .9, .99):
|
||||
steps = math.ceil(steps_per_epoch * p) # Steps in the last epoch.
|
||||
coef = 2 * (noise_multiplier * batch_size)**-2 * (
|
||||
# Accounting for privacy loss
|
||||
(epochs - 1) / steps_per_epoch + # ... from all-but-last epochs
|
||||
1 / (steps_per_epoch - steps + 1)) # ... due to the last epoch
|
||||
# Using RDP accountant to compute eps. Doing computation analytically is
|
||||
# an option.
|
||||
rdp = [order * coef for order in orders]
|
||||
eps, _, _ = get_privacy_spent(orders, rdp, target_delta=delta)
|
||||
print('\t{:g}% enjoy at least ({:.2f}, {})-DP'.format(
|
||||
p * 100, eps, delta))
|
||||
|
||||
# Compute privacy guarantees for the Sampled Gaussian Mechanism.
|
||||
rdp_sgm = compute_rdp(batch_size / samples, noise_multiplier,
|
||||
epochs * steps_per_epoch, orders)
|
||||
eps_sgm, _, _ = get_privacy_spent(orders, rdp_sgm, target_delta=delta)
|
||||
print('By comparison, DP-SGD analysis for training done with the same '
|
||||
'parameters and random shuffling in each epoch guarantees '
|
||||
'({:.2f}, {})-DP for all samples.'.format(eps_sgm, delta))
|
||||
|
||||
|
||||
def main(unused_argv):
|
||||
tf.logging.set_verbosity(tf.logging.INFO)
|
||||
if FLAGS.dpsgd and FLAGS.batch_size % FLAGS.microbatches != 0:
|
||||
raise ValueError('Number of microbatches should divide evenly batch_size')
|
||||
if FLAGS.data_l2_norm <= 0:
|
||||
raise ValueError('FLAGS.data_l2_norm needs to be positive.')
|
||||
if FLAGS.learning_rate > 8 / FLAGS.data_l2_norm**2:
|
||||
raise ValueError('The amplification by iteration analysis requires'
|
||||
raise ValueError('data_l2_norm must be positive.')
|
||||
if FLAGS.dpsgd and FLAGS.learning_rate > 8 / FLAGS.data_l2_norm**2:
|
||||
raise ValueError('The amplification-by-iteration analysis requires'
|
||||
'learning_rate <= 2 / beta, where beta is the smoothness'
|
||||
'of the loss function and is upper bounded by ||x||^2 / 4'
|
||||
'with ||x|| being the largest L2 norm of the samples.')
|
||||
|
@ -178,15 +207,12 @@ def main(unused_argv):
|
|||
train_data, train_labels, test_data, test_labels = load_mnist(
|
||||
data_l2_norm=FLAGS.data_l2_norm)
|
||||
|
||||
# Instantiate the tf.Estimator.
|
||||
# Instantiate tf.Estimator.
|
||||
# pylint: disable=g-long-lambda
|
||||
model_fn = lambda features, labels, mode: lr_model_fn(features, labels, mode,
|
||||
nclasses=10,
|
||||
dim=train_data.shape[1:]
|
||||
)
|
||||
model_fn = lambda features, labels, mode: lr_model_fn(
|
||||
features, labels, mode, nclasses=10, dim=train_data.shape[1:])
|
||||
mnist_classifier = tf.estimator.Estimator(
|
||||
model_fn=model_fn,
|
||||
model_dir=FLAGS.model_dir)
|
||||
model_fn=model_fn, model_dir=FLAGS.model_dir)
|
||||
|
||||
# Create tf.Estimator input functions for the training and test data.
|
||||
# To analyze the per-user privacy loss, we keep the same orders of samples in
|
||||
|
@ -198,22 +224,27 @@ def main(unused_argv):
|
|||
num_epochs=FLAGS.epochs,
|
||||
shuffle=False)
|
||||
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': test_data},
|
||||
y=test_labels,
|
||||
num_epochs=1,
|
||||
shuffle=False)
|
||||
x={'x': test_data}, y=test_labels, num_epochs=1, shuffle=False)
|
||||
|
||||
# Train the model
|
||||
steps_per_epoch = train_data.shape[0] // FLAGS.batch_size
|
||||
mnist_classifier.train(input_fn=train_input_fn,
|
||||
steps=steps_per_epoch * FLAGS.epochs)
|
||||
# Train the model.
|
||||
num_samples = train_data.shape[0]
|
||||
steps_per_epoch = num_samples // FLAGS.batch_size
|
||||
|
||||
# Evaluate the model and print results
|
||||
mnist_classifier.train(
|
||||
input_fn=train_input_fn, steps=steps_per_epoch * FLAGS.epochs)
|
||||
|
||||
# Evaluate the model and print results.
|
||||
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
|
||||
test_accuracy = eval_results['accuracy']
|
||||
print('Test accuracy after %d epochs is: %.3f' % (FLAGS.epochs,
|
||||
test_accuracy))
|
||||
print('Test accuracy after {} epochs is: {:.2f}'.format(
|
||||
FLAGS.epochs, eval_results['accuracy']))
|
||||
|
||||
if FLAGS.dpsgd:
|
||||
print_privacy_guarantees(
|
||||
epochs=FLAGS.epochs,
|
||||
batch_size=FLAGS.batch_size,
|
||||
samples=num_samples,
|
||||
noise_multiplier=FLAGS.noise_multiplier,
|
||||
)
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
Loading…
Reference in a new issue