Restructure TF Privacy to be more in line with other repos in the TF ecosystem.
PiperOrigin-RevId: 274674077
This commit is contained in:
parent
c0e05f6cad
commit
1ce8cd4032
47 changed files with 6849 additions and 23 deletions
57
tensorflow_privacy/__init__.py
Normal file
57
tensorflow_privacy/__init__.py
Normal file
|
@ -0,0 +1,57 @@
|
|||
# Copyright 2019, The TensorFlow Privacy Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""TensorFlow Privacy library."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
|
||||
# pylint: disable=g-import-not-at-top
|
||||
|
||||
if hasattr(sys, 'skip_tf_privacy_import'): # Useful for standalone scripts.
|
||||
pass
|
||||
else:
|
||||
from tensorflow_privacy.privacy.analysis.privacy_ledger import GaussianSumQueryEntry
|
||||
from tensorflow_privacy.privacy.analysis.privacy_ledger import PrivacyLedger
|
||||
from tensorflow_privacy.privacy.analysis.privacy_ledger import QueryWithLedger
|
||||
from tensorflow_privacy.privacy.analysis.privacy_ledger import SampleEntry
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query.dp_query import DPQuery
|
||||
from tensorflow_privacy.privacy.dp_query.gaussian_query import GaussianAverageQuery
|
||||
from tensorflow_privacy.privacy.dp_query.gaussian_query import GaussianSumQuery
|
||||
from tensorflow_privacy.privacy.dp_query.nested_query import NestedQuery
|
||||
from tensorflow_privacy.privacy.dp_query.no_privacy_query import NoPrivacyAverageQuery
|
||||
from tensorflow_privacy.privacy.dp_query.no_privacy_query import NoPrivacySumQuery
|
||||
from tensorflow_privacy.privacy.dp_query.normalized_query import NormalizedQuery
|
||||
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipSumQuery
|
||||
from tensorflow_privacy.privacy.dp_query.quantile_adaptive_clip_sum_query import QuantileAdaptiveClipAverageQuery
|
||||
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdagradGaussianOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdagradOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdamGaussianOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPAdamOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentOptimizer
|
||||
|
||||
try:
|
||||
from tensorflow_privacy.privacy.bolt_on.models import BoltOnModel
|
||||
from tensorflow_privacy.privacy.bolt_on.optimizers import BoltOn
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexMixin
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexBinaryCrossentropy
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexHuber
|
||||
except ImportError:
|
||||
# module `bolt_on` not yet available in this version of TF Privacy
|
||||
pass
|
5
tensorflow_privacy/privacy/BUILD
Normal file
5
tensorflow_privacy/privacy/BUILD
Normal file
|
@ -0,0 +1,5 @@
|
|||
package(default_visibility = ["//visibility:public"])
|
||||
|
||||
licenses(["notice"])
|
||||
|
||||
exports_files(["LICENSE"])
|
13
tensorflow_privacy/privacy/__init__.py
Normal file
13
tensorflow_privacy/privacy/__init__.py
Normal file
|
@ -0,0 +1,13 @@
|
|||
# Copyright 2019, The TensorFlow Privacy Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
0
tensorflow_privacy/privacy/analysis/__init__.py
Normal file
0
tensorflow_privacy/privacy/analysis/__init__.py
Normal file
|
@ -0,0 +1,97 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
r"""Command-line script for computing privacy of a model trained with DP-SGD.
|
||||
|
||||
The script applies the RDP accountant to estimate privacy budget of an iterated
|
||||
Sampled Gaussian Mechanism. The mechanism's parameters are controlled by flags.
|
||||
|
||||
Example:
|
||||
compute_dp_sgd_privacy
|
||||
--N=60000 \
|
||||
--batch_size=256 \
|
||||
--noise_multiplier=1.12 \
|
||||
--epochs=60 \
|
||||
--delta=1e-5
|
||||
|
||||
The output states that DP-SGD with these parameters satisfies (2.92, 1e-5)-DP.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
import sys
|
||||
|
||||
from absl import app
|
||||
from absl import flags
|
||||
|
||||
# Opting out of loading all sibling packages and their dependencies.
|
||||
sys.skip_tf_privacy_import = True
|
||||
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp # pylint: disable=g-import-not-at-top
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
|
||||
FLAGS = flags.FLAGS
|
||||
|
||||
flags.DEFINE_integer('N', None, 'Total number of examples')
|
||||
flags.DEFINE_integer('batch_size', None, 'Batch size')
|
||||
flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier for DP-SGD')
|
||||
flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)')
|
||||
flags.DEFINE_float('delta', 1e-6, 'Target delta')
|
||||
|
||||
flags.mark_flag_as_required('N')
|
||||
flags.mark_flag_as_required('batch_size')
|
||||
flags.mark_flag_as_required('noise_multiplier')
|
||||
flags.mark_flag_as_required('epochs')
|
||||
|
||||
|
||||
def apply_dp_sgd_analysis(q, sigma, steps, orders, delta):
|
||||
"""Compute and print results of DP-SGD analysis."""
|
||||
|
||||
# compute_rdp requires that sigma be the ratio of the standard deviation of
|
||||
# the Gaussian noise to the l2-sensitivity of the function to which it is
|
||||
# added. Hence, sigma here corresponds to the `noise_multiplier` parameter
|
||||
# in the DP-SGD implementation found in privacy.optimizers.dp_optimizer
|
||||
rdp = compute_rdp(q, sigma, steps, orders)
|
||||
|
||||
eps, _, opt_order = get_privacy_spent(orders, rdp, target_delta=delta)
|
||||
|
||||
print('DP-SGD with sampling rate = {:.3g}% and noise_multiplier = {} iterated'
|
||||
' over {} steps satisfies'.format(100 * q, sigma, steps), end=' ')
|
||||
print('differential privacy with eps = {:.3g} and delta = {}.'.format(
|
||||
eps, delta))
|
||||
print('The optimal RDP order is {}.'.format(opt_order))
|
||||
|
||||
if opt_order == max(orders) or opt_order == min(orders):
|
||||
print('The privacy estimate is likely to be improved by expanding '
|
||||
'the set of orders.')
|
||||
|
||||
|
||||
def main(argv):
|
||||
del argv # argv is not used.
|
||||
|
||||
q = FLAGS.batch_size / FLAGS.N # q - the sampling ratio.
|
||||
if q > 1:
|
||||
raise app.UsageError('N must be larger than the batch size.')
|
||||
orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] +
|
||||
list(range(5, 64)) + [128, 256, 512])
|
||||
steps = int(math.ceil(FLAGS.epochs * FLAGS.N / FLAGS.batch_size))
|
||||
|
||||
apply_dp_sgd_analysis(q, FLAGS.noise_multiplier, steps, orders, FLAGS.delta)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(main)
|
257
tensorflow_privacy/privacy/analysis/privacy_ledger.py
Normal file
257
tensorflow_privacy/privacy/analysis/privacy_ledger.py
Normal file
|
@ -0,0 +1,257 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""PrivacyLedger class for keeping a record of private queries."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import tensor_buffer
|
||||
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
SampleEntry = collections.namedtuple( # pylint: disable=invalid-name
|
||||
'SampleEntry', ['population_size', 'selection_probability', 'queries'])
|
||||
|
||||
GaussianSumQueryEntry = collections.namedtuple( # pylint: disable=invalid-name
|
||||
'GaussianSumQueryEntry', ['l2_norm_bound', 'noise_stddev'])
|
||||
|
||||
|
||||
def format_ledger(sample_array, query_array):
|
||||
"""Converts array representation into a list of SampleEntries."""
|
||||
samples = []
|
||||
query_pos = 0
|
||||
sample_pos = 0
|
||||
for sample in sample_array:
|
||||
population_size, selection_probability, num_queries = sample
|
||||
queries = []
|
||||
for _ in range(int(num_queries)):
|
||||
query = query_array[query_pos]
|
||||
assert int(query[0]) == sample_pos
|
||||
queries.append(GaussianSumQueryEntry(*query[1:]))
|
||||
query_pos += 1
|
||||
samples.append(SampleEntry(population_size, selection_probability, queries))
|
||||
sample_pos += 1
|
||||
return samples
|
||||
|
||||
|
||||
class PrivacyLedger(object):
|
||||
"""Class for keeping a record of private queries.
|
||||
|
||||
The PrivacyLedger keeps a record of all queries executed over a given dataset
|
||||
for the purpose of computing privacy guarantees.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
population_size,
|
||||
selection_probability):
|
||||
"""Initialize the PrivacyLedger.
|
||||
|
||||
Args:
|
||||
population_size: An integer (may be variable) specifying the size of the
|
||||
population, i.e. size of the training data used in each epoch.
|
||||
selection_probability: A float (may be variable) specifying the
|
||||
probability each record is included in a sample.
|
||||
|
||||
Raises:
|
||||
ValueError: If selection_probability is 0.
|
||||
"""
|
||||
self._population_size = population_size
|
||||
self._selection_probability = selection_probability
|
||||
|
||||
if tf.executing_eagerly():
|
||||
if tf.equal(selection_probability, 0):
|
||||
raise ValueError('Selection probability cannot be 0.')
|
||||
init_capacity = tf.cast(tf.ceil(1 / selection_probability), tf.int32)
|
||||
else:
|
||||
if selection_probability == 0:
|
||||
raise ValueError('Selection probability cannot be 0.')
|
||||
init_capacity = np.int(np.ceil(1 / selection_probability))
|
||||
|
||||
# The query buffer stores rows corresponding to GaussianSumQueryEntries.
|
||||
self._query_buffer = tensor_buffer.TensorBuffer(
|
||||
init_capacity, [3], tf.float32, 'query')
|
||||
self._sample_var = tf.Variable(
|
||||
initial_value=tf.zeros([3]), trainable=False, name='sample')
|
||||
|
||||
# The sample buffer stores rows corresponding to SampleEntries.
|
||||
self._sample_buffer = tensor_buffer.TensorBuffer(
|
||||
init_capacity, [3], tf.float32, 'sample')
|
||||
self._sample_count = tf.Variable(
|
||||
initial_value=0.0, trainable=False, name='sample_count')
|
||||
self._query_count = tf.Variable(
|
||||
initial_value=0.0, trainable=False, name='query_count')
|
||||
try:
|
||||
# Newer versions of TF
|
||||
self._cs = tf.CriticalSection()
|
||||
except AttributeError:
|
||||
# Older versions of TF
|
||||
self._cs = tf.contrib.framework.CriticalSection()
|
||||
|
||||
def record_sum_query(self, l2_norm_bound, noise_stddev):
|
||||
"""Records that a query was issued.
|
||||
|
||||
Args:
|
||||
l2_norm_bound: The maximum l2 norm of the tensor group in the query.
|
||||
noise_stddev: The standard deviation of the noise applied to the sum.
|
||||
|
||||
Returns:
|
||||
An operation recording the sum query to the ledger.
|
||||
"""
|
||||
|
||||
def _do_record_query():
|
||||
with tf.control_dependencies(
|
||||
[tf.assign(self._query_count, self._query_count + 1)]):
|
||||
return self._query_buffer.append(
|
||||
[self._sample_count, l2_norm_bound, noise_stddev])
|
||||
|
||||
return self._cs.execute(_do_record_query)
|
||||
|
||||
def finalize_sample(self):
|
||||
"""Finalizes sample and records sample ledger entry."""
|
||||
with tf.control_dependencies([
|
||||
tf.assign(self._sample_var, [
|
||||
self._population_size, self._selection_probability,
|
||||
self._query_count
|
||||
])
|
||||
]):
|
||||
with tf.control_dependencies([
|
||||
tf.assign(self._sample_count, self._sample_count + 1),
|
||||
tf.assign(self._query_count, 0)
|
||||
]):
|
||||
return self._sample_buffer.append(self._sample_var)
|
||||
|
||||
def get_unformatted_ledger(self):
|
||||
return self._sample_buffer.values, self._query_buffer.values
|
||||
|
||||
def get_formatted_ledger(self, sess):
|
||||
"""Gets the formatted query ledger.
|
||||
|
||||
Args:
|
||||
sess: The tensorflow session in which the ledger was created.
|
||||
|
||||
Returns:
|
||||
The query ledger as a list of SampleEntries.
|
||||
"""
|
||||
sample_array = sess.run(self._sample_buffer.values)
|
||||
query_array = sess.run(self._query_buffer.values)
|
||||
|
||||
return format_ledger(sample_array, query_array)
|
||||
|
||||
def get_formatted_ledger_eager(self):
|
||||
"""Gets the formatted query ledger.
|
||||
|
||||
Returns:
|
||||
The query ledger as a list of SampleEntries.
|
||||
"""
|
||||
sample_array = self._sample_buffer.values.numpy()
|
||||
query_array = self._query_buffer.values.numpy()
|
||||
|
||||
return format_ledger(sample_array, query_array)
|
||||
|
||||
|
||||
class QueryWithLedger(dp_query.DPQuery):
|
||||
"""A class for DP queries that record events to a PrivacyLedger.
|
||||
|
||||
QueryWithLedger should be the top-level query in a structure of queries that
|
||||
may include sum queries, nested queries, etc. It should simply wrap another
|
||||
query and contain a reference to the ledger. Any contained queries (including
|
||||
those contained in the leaves of a nested query) should also contain a
|
||||
reference to the same ledger object.
|
||||
|
||||
For example usage, see privacy_ledger_test.py.
|
||||
"""
|
||||
|
||||
def __init__(self, query,
|
||||
population_size=None, selection_probability=None,
|
||||
ledger=None):
|
||||
"""Initializes the QueryWithLedger.
|
||||
|
||||
Args:
|
||||
query: The query whose events should be recorded to the ledger. Any
|
||||
subqueries (including those in the leaves of a nested query) should also
|
||||
contain a reference to the same ledger given here.
|
||||
population_size: An integer (may be variable) specifying the size of the
|
||||
population, i.e. size of the training data used in each epoch. May be
|
||||
None if `ledger` is specified.
|
||||
selection_probability: A float (may be variable) specifying the
|
||||
probability each record is included in a sample. May be None if `ledger`
|
||||
is specified.
|
||||
ledger: A PrivacyLedger to use. Must be specified if either of
|
||||
`population_size` or `selection_probability` is None.
|
||||
"""
|
||||
self._query = query
|
||||
if population_size is not None and selection_probability is not None:
|
||||
self.set_ledger(PrivacyLedger(population_size, selection_probability))
|
||||
elif ledger is not None:
|
||||
self.set_ledger(ledger)
|
||||
else:
|
||||
raise ValueError('One of (population_size, selection_probability) or '
|
||||
'ledger must be specified.')
|
||||
|
||||
@property
|
||||
def ledger(self):
|
||||
return self._ledger
|
||||
|
||||
def set_ledger(self, ledger):
|
||||
self._ledger = ledger
|
||||
self._query.set_ledger(ledger)
|
||||
|
||||
def initial_global_state(self):
|
||||
"""See base class."""
|
||||
return self._query.initial_global_state()
|
||||
|
||||
def derive_sample_params(self, global_state):
|
||||
"""See base class."""
|
||||
return self._query.derive_sample_params(global_state)
|
||||
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
return self._query.initial_sample_state(template)
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
"""See base class."""
|
||||
return self._query.preprocess_record(params, record)
|
||||
|
||||
def accumulate_preprocessed_record(self, sample_state, preprocessed_record):
|
||||
"""See base class."""
|
||||
return self._query.accumulate_preprocessed_record(
|
||||
sample_state, preprocessed_record)
|
||||
|
||||
def merge_sample_states(self, sample_state_1, sample_state_2):
|
||||
"""See base class."""
|
||||
return self._query.merge_sample_states(sample_state_1, sample_state_2)
|
||||
|
||||
def get_noised_result(self, sample_state, global_state):
|
||||
"""Ensures sample is recorded to the ledger and returns noised result."""
|
||||
# Ensure sample_state is fully aggregated before calling get_noised_result.
|
||||
with tf.control_dependencies(nest.flatten(sample_state)):
|
||||
result, new_global_state = self._query.get_noised_result(
|
||||
sample_state, global_state)
|
||||
# Ensure inner queries have recorded before finalizing.
|
||||
with tf.control_dependencies(nest.flatten(result)):
|
||||
finalize = self._ledger.finalize_sample()
|
||||
# Ensure finalizing happens.
|
||||
with tf.control_dependencies([finalize]):
|
||||
return nest.map_structure(tf.identity, result), new_global_state
|
137
tensorflow_privacy/privacy/analysis/privacy_ledger_test.py
Normal file
137
tensorflow_privacy/privacy/analysis/privacy_ledger_test.py
Normal file
|
@ -0,0 +1,137 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for PrivacyLedger."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import privacy_ledger
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.dp_query import nested_query
|
||||
from tensorflow_privacy.privacy.dp_query import test_utils
|
||||
|
||||
tf.enable_eager_execution()
|
||||
|
||||
|
||||
class PrivacyLedgerTest(tf.test.TestCase):
|
||||
|
||||
def test_fail_on_probability_zero(self):
|
||||
with self.assertRaisesRegexp(ValueError,
|
||||
'Selection probability cannot be 0.'):
|
||||
privacy_ledger.PrivacyLedger(10, 0)
|
||||
|
||||
def test_basic(self):
|
||||
ledger = privacy_ledger.PrivacyLedger(10, 0.1)
|
||||
ledger.record_sum_query(5.0, 1.0)
|
||||
ledger.record_sum_query(2.0, 0.5)
|
||||
|
||||
ledger.finalize_sample()
|
||||
|
||||
expected_queries = [[5.0, 1.0], [2.0, 0.5]]
|
||||
formatted = ledger.get_formatted_ledger_eager()
|
||||
|
||||
sample = formatted[0]
|
||||
self.assertAllClose(sample.population_size, 10.0)
|
||||
self.assertAllClose(sample.selection_probability, 0.1)
|
||||
self.assertAllClose(sorted(sample.queries), sorted(expected_queries))
|
||||
|
||||
def test_sum_query(self):
|
||||
record1 = tf.constant([2.0, 0.0])
|
||||
record2 = tf.constant([-1.0, 1.0])
|
||||
|
||||
population_size = tf.Variable(0)
|
||||
selection_probability = tf.Variable(1.0)
|
||||
|
||||
query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=10.0, stddev=0.0)
|
||||
query = privacy_ledger.QueryWithLedger(
|
||||
query, population_size, selection_probability)
|
||||
|
||||
# First sample.
|
||||
tf.assign(population_size, 10)
|
||||
tf.assign(selection_probability, 0.1)
|
||||
test_utils.run_query(query, [record1, record2])
|
||||
|
||||
expected_queries = [[10.0, 0.0]]
|
||||
formatted = query.ledger.get_formatted_ledger_eager()
|
||||
sample_1 = formatted[0]
|
||||
self.assertAllClose(sample_1.population_size, 10.0)
|
||||
self.assertAllClose(sample_1.selection_probability, 0.1)
|
||||
self.assertAllClose(sample_1.queries, expected_queries)
|
||||
|
||||
# Second sample.
|
||||
tf.assign(population_size, 20)
|
||||
tf.assign(selection_probability, 0.2)
|
||||
test_utils.run_query(query, [record1, record2])
|
||||
|
||||
formatted = query.ledger.get_formatted_ledger_eager()
|
||||
sample_1, sample_2 = formatted
|
||||
self.assertAllClose(sample_1.population_size, 10.0)
|
||||
self.assertAllClose(sample_1.selection_probability, 0.1)
|
||||
self.assertAllClose(sample_1.queries, expected_queries)
|
||||
|
||||
self.assertAllClose(sample_2.population_size, 20.0)
|
||||
self.assertAllClose(sample_2.selection_probability, 0.2)
|
||||
self.assertAllClose(sample_2.queries, expected_queries)
|
||||
|
||||
def test_nested_query(self):
|
||||
population_size = tf.Variable(0)
|
||||
selection_probability = tf.Variable(1.0)
|
||||
|
||||
query1 = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=4.0, sum_stddev=2.0, denominator=5.0)
|
||||
query2 = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=5.0, sum_stddev=1.0, denominator=5.0)
|
||||
|
||||
query = nested_query.NestedQuery([query1, query2])
|
||||
query = privacy_ledger.QueryWithLedger(
|
||||
query, population_size, selection_probability)
|
||||
|
||||
record1 = [1.0, [12.0, 9.0]]
|
||||
record2 = [5.0, [1.0, 2.0]]
|
||||
|
||||
# First sample.
|
||||
tf.assign(population_size, 10)
|
||||
tf.assign(selection_probability, 0.1)
|
||||
test_utils.run_query(query, [record1, record2])
|
||||
|
||||
expected_queries = [[4.0, 2.0], [5.0, 1.0]]
|
||||
formatted = query.ledger.get_formatted_ledger_eager()
|
||||
sample_1 = formatted[0]
|
||||
self.assertAllClose(sample_1.population_size, 10.0)
|
||||
self.assertAllClose(sample_1.selection_probability, 0.1)
|
||||
self.assertAllClose(sorted(sample_1.queries), sorted(expected_queries))
|
||||
|
||||
# Second sample.
|
||||
tf.assign(population_size, 20)
|
||||
tf.assign(selection_probability, 0.2)
|
||||
test_utils.run_query(query, [record1, record2])
|
||||
|
||||
formatted = query.ledger.get_formatted_ledger_eager()
|
||||
sample_1, sample_2 = formatted
|
||||
self.assertAllClose(sample_1.population_size, 10.0)
|
||||
self.assertAllClose(sample_1.selection_probability, 0.1)
|
||||
self.assertAllClose(sorted(sample_1.queries), sorted(expected_queries))
|
||||
|
||||
self.assertAllClose(sample_2.population_size, 20.0)
|
||||
self.assertAllClose(sample_2.selection_probability, 0.2)
|
||||
self.assertAllClose(sorted(sample_2.queries), sorted(expected_queries))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
318
tensorflow_privacy/privacy/analysis/rdp_accountant.py
Normal file
318
tensorflow_privacy/privacy/analysis/rdp_accountant.py
Normal file
|
@ -0,0 +1,318 @@
|
|||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""RDP analysis of the Sampled Gaussian Mechanism.
|
||||
|
||||
Functionality for computing Renyi differential privacy (RDP) of an additive
|
||||
Sampled Gaussian Mechanism (SGM). Its public interface consists of two methods:
|
||||
compute_rdp(q, noise_multiplier, T, orders) computes RDP for SGM iterated
|
||||
T times.
|
||||
get_privacy_spent(orders, rdp, target_eps, target_delta) computes delta
|
||||
(or eps) given RDP at multiple orders and
|
||||
a target value for eps (or delta).
|
||||
|
||||
Example use:
|
||||
|
||||
Suppose that we have run an SGM applied to a function with l2-sensitivity 1.
|
||||
Its parameters are given as a list of tuples (q1, sigma1, T1), ...,
|
||||
(qk, sigma_k, Tk), and we wish to compute eps for a given delta.
|
||||
The example code would be:
|
||||
|
||||
max_order = 32
|
||||
orders = range(2, max_order + 1)
|
||||
rdp = np.zeros_like(orders, dtype=float)
|
||||
for q, sigma, T in parameters:
|
||||
rdp += rdp_accountant.compute_rdp(q, sigma, T, orders)
|
||||
eps, _, opt_order = rdp_accountant.get_privacy_spent(rdp, target_delta=delta)
|
||||
"""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import math
|
||||
import sys
|
||||
|
||||
import numpy as np
|
||||
from scipy import special
|
||||
import six
|
||||
|
||||
########################
|
||||
# LOG-SPACE ARITHMETIC #
|
||||
########################
|
||||
|
||||
|
||||
def _log_add(logx, logy):
|
||||
"""Add two numbers in the log space."""
|
||||
a, b = min(logx, logy), max(logx, logy)
|
||||
if a == -np.inf: # adding 0
|
||||
return b
|
||||
# Use exp(a) + exp(b) = (exp(a - b) + 1) * exp(b)
|
||||
return math.log1p(math.exp(a - b)) + b # log1p(x) = log(x + 1)
|
||||
|
||||
|
||||
def _log_sub(logx, logy):
|
||||
"""Subtract two numbers in the log space. Answer must be non-negative."""
|
||||
if logx < logy:
|
||||
raise ValueError("The result of subtraction must be non-negative.")
|
||||
if logy == -np.inf: # subtracting 0
|
||||
return logx
|
||||
if logx == logy:
|
||||
return -np.inf # 0 is represented as -np.inf in the log space.
|
||||
|
||||
try:
|
||||
# Use exp(x) - exp(y) = (exp(x - y) - 1) * exp(y).
|
||||
return math.log(math.expm1(logx - logy)) + logy # expm1(x) = exp(x) - 1
|
||||
except OverflowError:
|
||||
return logx
|
||||
|
||||
|
||||
def _log_print(logx):
|
||||
"""Pretty print."""
|
||||
if logx < math.log(sys.float_info.max):
|
||||
return "{}".format(math.exp(logx))
|
||||
else:
|
||||
return "exp({})".format(logx)
|
||||
|
||||
|
||||
def _compute_log_a_int(q, sigma, alpha):
|
||||
"""Compute log(A_alpha) for integer alpha. 0 < q < 1."""
|
||||
assert isinstance(alpha, six.integer_types)
|
||||
|
||||
# Initialize with 0 in the log space.
|
||||
log_a = -np.inf
|
||||
|
||||
for i in range(alpha + 1):
|
||||
log_coef_i = (
|
||||
math.log(special.binom(alpha, i)) + i * math.log(q) +
|
||||
(alpha - i) * math.log(1 - q))
|
||||
|
||||
s = log_coef_i + (i * i - i) / (2 * (sigma**2))
|
||||
log_a = _log_add(log_a, s)
|
||||
|
||||
return float(log_a)
|
||||
|
||||
|
||||
def _compute_log_a_frac(q, sigma, alpha):
|
||||
"""Compute log(A_alpha) for fractional alpha. 0 < q < 1."""
|
||||
# The two parts of A_alpha, integrals over (-inf,z0] and [z0, +inf), are
|
||||
# initialized to 0 in the log space:
|
||||
log_a0, log_a1 = -np.inf, -np.inf
|
||||
i = 0
|
||||
|
||||
z0 = sigma**2 * math.log(1 / q - 1) + .5
|
||||
|
||||
while True: # do ... until loop
|
||||
coef = special.binom(alpha, i)
|
||||
log_coef = math.log(abs(coef))
|
||||
j = alpha - i
|
||||
|
||||
log_t0 = log_coef + i * math.log(q) + j * math.log(1 - q)
|
||||
log_t1 = log_coef + j * math.log(q) + i * math.log(1 - q)
|
||||
|
||||
log_e0 = math.log(.5) + _log_erfc((i - z0) / (math.sqrt(2) * sigma))
|
||||
log_e1 = math.log(.5) + _log_erfc((z0 - j) / (math.sqrt(2) * sigma))
|
||||
|
||||
log_s0 = log_t0 + (i * i - i) / (2 * (sigma**2)) + log_e0
|
||||
log_s1 = log_t1 + (j * j - j) / (2 * (sigma**2)) + log_e1
|
||||
|
||||
if coef > 0:
|
||||
log_a0 = _log_add(log_a0, log_s0)
|
||||
log_a1 = _log_add(log_a1, log_s1)
|
||||
else:
|
||||
log_a0 = _log_sub(log_a0, log_s0)
|
||||
log_a1 = _log_sub(log_a1, log_s1)
|
||||
|
||||
i += 1
|
||||
if max(log_s0, log_s1) < -30:
|
||||
break
|
||||
|
||||
return _log_add(log_a0, log_a1)
|
||||
|
||||
|
||||
def _compute_log_a(q, sigma, alpha):
|
||||
"""Compute log(A_alpha) for any positive finite alpha."""
|
||||
if float(alpha).is_integer():
|
||||
return _compute_log_a_int(q, sigma, int(alpha))
|
||||
else:
|
||||
return _compute_log_a_frac(q, sigma, alpha)
|
||||
|
||||
|
||||
def _log_erfc(x):
|
||||
"""Compute log(erfc(x)) with high accuracy for large x."""
|
||||
try:
|
||||
return math.log(2) + special.log_ndtr(-x * 2**.5)
|
||||
except NameError:
|
||||
# If log_ndtr is not available, approximate as follows:
|
||||
r = special.erfc(x)
|
||||
if r == 0.0:
|
||||
# Using the Laurent series at infinity for the tail of the erfc function:
|
||||
# erfc(x) ~ exp(-x^2-.5/x^2+.625/x^4)/(x*pi^.5)
|
||||
# To verify in Mathematica:
|
||||
# Series[Log[Erfc[x]] + Log[x] + Log[Pi]/2 + x^2, {x, Infinity, 6}]
|
||||
return (-math.log(math.pi) / 2 - math.log(x) - x**2 - .5 * x**-2 +
|
||||
.625 * x**-4 - 37. / 24. * x**-6 + 353. / 64. * x**-8)
|
||||
else:
|
||||
return math.log(r)
|
||||
|
||||
|
||||
def _compute_delta(orders, rdp, eps):
|
||||
"""Compute delta given a list of RDP values and target epsilon.
|
||||
|
||||
Args:
|
||||
orders: An array (or a scalar) of orders.
|
||||
rdp: A list (or a scalar) of RDP guarantees.
|
||||
eps: The target epsilon.
|
||||
|
||||
Returns:
|
||||
Pair of (delta, optimal_order).
|
||||
|
||||
Raises:
|
||||
ValueError: If input is malformed.
|
||||
|
||||
"""
|
||||
orders_vec = np.atleast_1d(orders)
|
||||
rdp_vec = np.atleast_1d(rdp)
|
||||
|
||||
if len(orders_vec) != len(rdp_vec):
|
||||
raise ValueError("Input lists must have the same length.")
|
||||
|
||||
deltas = np.exp((rdp_vec - eps) * (orders_vec - 1))
|
||||
idx_opt = np.argmin(deltas)
|
||||
return min(deltas[idx_opt], 1.), orders_vec[idx_opt]
|
||||
|
||||
|
||||
def _compute_eps(orders, rdp, delta):
|
||||
"""Compute epsilon given a list of RDP values and target delta.
|
||||
|
||||
Args:
|
||||
orders: An array (or a scalar) of orders.
|
||||
rdp: A list (or a scalar) of RDP guarantees.
|
||||
delta: The target delta.
|
||||
|
||||
Returns:
|
||||
Pair of (eps, optimal_order).
|
||||
|
||||
Raises:
|
||||
ValueError: If input is malformed.
|
||||
|
||||
"""
|
||||
orders_vec = np.atleast_1d(orders)
|
||||
rdp_vec = np.atleast_1d(rdp)
|
||||
|
||||
if len(orders_vec) != len(rdp_vec):
|
||||
raise ValueError("Input lists must have the same length.")
|
||||
|
||||
eps = rdp_vec - math.log(delta) / (orders_vec - 1)
|
||||
|
||||
idx_opt = np.nanargmin(eps) # Ignore NaNs
|
||||
return eps[idx_opt], orders_vec[idx_opt]
|
||||
|
||||
|
||||
def _compute_rdp(q, sigma, alpha):
|
||||
"""Compute RDP of the Sampled Gaussian mechanism at order alpha.
|
||||
|
||||
Args:
|
||||
q: The sampling rate.
|
||||
sigma: The std of the additive Gaussian noise.
|
||||
alpha: The order at which RDP is computed.
|
||||
|
||||
Returns:
|
||||
RDP at alpha, can be np.inf.
|
||||
"""
|
||||
if q == 0:
|
||||
return 0
|
||||
|
||||
if q == 1.:
|
||||
return alpha / (2 * sigma**2)
|
||||
|
||||
if np.isinf(alpha):
|
||||
return np.inf
|
||||
|
||||
return _compute_log_a(q, sigma, alpha) / (alpha - 1)
|
||||
|
||||
|
||||
def compute_rdp(q, noise_multiplier, steps, orders):
|
||||
"""Compute RDP of the Sampled Gaussian Mechanism.
|
||||
|
||||
Args:
|
||||
q: The sampling rate.
|
||||
noise_multiplier: The ratio of the standard deviation of the Gaussian noise
|
||||
to the l2-sensitivity of the function to which it is added.
|
||||
steps: The number of steps.
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
|
||||
Returns:
|
||||
The RDPs at all orders, can be np.inf.
|
||||
"""
|
||||
if np.isscalar(orders):
|
||||
rdp = _compute_rdp(q, noise_multiplier, orders)
|
||||
else:
|
||||
rdp = np.array([_compute_rdp(q, noise_multiplier, order)
|
||||
for order in orders])
|
||||
|
||||
return rdp * steps
|
||||
|
||||
|
||||
def get_privacy_spent(orders, rdp, target_eps=None, target_delta=None):
|
||||
"""Compute delta (or eps) for given eps (or delta) from RDP values.
|
||||
|
||||
Args:
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
rdp: An array of RDP values. Must be of the same length as the orders list.
|
||||
target_eps: If not None, the epsilon for which we compute the corresponding
|
||||
delta.
|
||||
target_delta: If not None, the delta for which we compute the corresponding
|
||||
epsilon. Exactly one of target_eps and target_delta must be None.
|
||||
|
||||
Returns:
|
||||
eps, delta, opt_order.
|
||||
|
||||
Raises:
|
||||
ValueError: If target_eps and target_delta are messed up.
|
||||
"""
|
||||
if target_eps is None and target_delta is None:
|
||||
raise ValueError(
|
||||
"Exactly one out of eps and delta must be None. (Both are).")
|
||||
|
||||
if target_eps is not None and target_delta is not None:
|
||||
raise ValueError(
|
||||
"Exactly one out of eps and delta must be None. (None is).")
|
||||
|
||||
if target_eps is not None:
|
||||
delta, opt_order = _compute_delta(orders, rdp, target_eps)
|
||||
return target_eps, delta, opt_order
|
||||
else:
|
||||
eps, opt_order = _compute_eps(orders, rdp, target_delta)
|
||||
return eps, target_delta, opt_order
|
||||
|
||||
|
||||
def compute_rdp_from_ledger(ledger, orders):
|
||||
"""Compute RDP of Sampled Gaussian Mechanism from ledger.
|
||||
|
||||
Args:
|
||||
ledger: A formatted privacy ledger.
|
||||
orders: An array (or a scalar) of RDP orders.
|
||||
|
||||
Returns:
|
||||
RDP at all orders, can be np.inf.
|
||||
"""
|
||||
total_rdp = np.zeros_like(orders, dtype=float)
|
||||
for sample in ledger:
|
||||
# Compute equivalent z from l2_clip_bounds and noise stddevs in sample.
|
||||
# See https://arxiv.org/pdf/1812.06210.pdf for derivation of this formula.
|
||||
effective_z = sum([
|
||||
(q.noise_stddev / q.l2_norm_bound)**-2 for q in sample.queries])**-0.5
|
||||
total_rdp += compute_rdp(
|
||||
sample.selection_probability, effective_z, 1, orders)
|
||||
return total_rdp
|
177
tensorflow_privacy/privacy/analysis/rdp_accountant_test.py
Normal file
177
tensorflow_privacy/privacy/analysis/rdp_accountant_test.py
Normal file
|
@ -0,0 +1,177 @@
|
|||
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# ==============================================================================
|
||||
"""Tests for rdp_accountant.py."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
from mpmath import exp
|
||||
from mpmath import inf
|
||||
from mpmath import log
|
||||
from mpmath import npdf
|
||||
from mpmath import quad
|
||||
import numpy as np
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import privacy_ledger
|
||||
from tensorflow_privacy.privacy.analysis import rdp_accountant
|
||||
|
||||
|
||||
class TestGaussianMoments(parameterized.TestCase):
|
||||
#################################
|
||||
# HELPER FUNCTIONS: #
|
||||
# Exact computations using #
|
||||
# multi-precision arithmetic. #
|
||||
#################################
|
||||
|
||||
def _log_float_mp(self, x):
|
||||
# Convert multi-precision input to float log space.
|
||||
if x >= sys.float_info.min:
|
||||
return float(log(x))
|
||||
else:
|
||||
return -np.inf
|
||||
|
||||
def _integral_mp(self, fn, bounds=(-inf, inf)):
|
||||
integral, _ = quad(fn, bounds, error=True, maxdegree=8)
|
||||
return integral
|
||||
|
||||
def _distributions_mp(self, sigma, q):
|
||||
|
||||
def _mu0(x):
|
||||
return npdf(x, mu=0, sigma=sigma)
|
||||
|
||||
def _mu1(x):
|
||||
return npdf(x, mu=1, sigma=sigma)
|
||||
|
||||
def _mu(x):
|
||||
return (1 - q) * _mu0(x) + q * _mu1(x)
|
||||
|
||||
return _mu0, _mu # Closure!
|
||||
|
||||
def _mu1_over_mu0(self, x, sigma):
|
||||
# Closed-form expression for N(1, sigma^2) / N(0, sigma^2) at x.
|
||||
return exp((2 * x - 1) / (2 * sigma**2))
|
||||
|
||||
def _mu_over_mu0(self, x, q, sigma):
|
||||
return (1 - q) + q * self._mu1_over_mu0(x, sigma)
|
||||
|
||||
def _compute_a_mp(self, sigma, q, alpha):
|
||||
"""Compute A_alpha for arbitrary alpha by numerical integration."""
|
||||
mu0, _ = self._distributions_mp(sigma, q)
|
||||
a_alpha_fn = lambda z: mu0(z) * self._mu_over_mu0(z, q, sigma)**alpha
|
||||
a_alpha = self._integral_mp(a_alpha_fn)
|
||||
return a_alpha
|
||||
|
||||
# TEST ROUTINES
|
||||
def test_compute_rdp_no_data(self):
|
||||
# q = 0
|
||||
self.assertEqual(rdp_accountant.compute_rdp(0, 10, 1, 20), 0)
|
||||
|
||||
def test_compute_rdp_no_sampling(self):
|
||||
# q = 1, RDP = alpha/2 * sigma^2
|
||||
self.assertEqual(rdp_accountant.compute_rdp(1, 10, 1, 20), 0.1)
|
||||
|
||||
def test_compute_rdp_scalar(self):
|
||||
rdp_scalar = rdp_accountant.compute_rdp(0.1, 2, 10, 5)
|
||||
self.assertAlmostEqual(rdp_scalar, 0.07737, places=5)
|
||||
|
||||
def test_compute_rdp_sequence(self):
|
||||
rdp_vec = rdp_accountant.compute_rdp(0.01, 2.5, 50,
|
||||
[1.5, 2.5, 5, 50, 100, np.inf])
|
||||
self.assertSequenceAlmostEqual(
|
||||
rdp_vec, [0.00065, 0.001085, 0.00218075, 0.023846, 167.416307, np.inf],
|
||||
delta=1e-5)
|
||||
|
||||
params = ({'q': 1e-7, 'sigma': .1, 'order': 1.01},
|
||||
{'q': 1e-6, 'sigma': .1, 'order': 256},
|
||||
{'q': 1e-5, 'sigma': .1, 'order': 256.1},
|
||||
{'q': 1e-6, 'sigma': 1, 'order': 27},
|
||||
{'q': 1e-4, 'sigma': 1., 'order': 1.5},
|
||||
{'q': 1e-3, 'sigma': 1., 'order': 2},
|
||||
{'q': .01, 'sigma': 10, 'order': 20},
|
||||
{'q': .1, 'sigma': 100, 'order': 20.5},
|
||||
{'q': .99, 'sigma': .1, 'order': 256},
|
||||
{'q': .999, 'sigma': 100, 'order': 256.1})
|
||||
|
||||
# pylint:disable=undefined-variable
|
||||
@parameterized.parameters(p for p in params)
|
||||
def test_compute_log_a_equals_mp(self, q, sigma, order):
|
||||
# Compare the cheap computation of log(A) with an expensive, multi-precision
|
||||
# computation.
|
||||
log_a = rdp_accountant._compute_log_a(q, sigma, order)
|
||||
log_a_mp = self._log_float_mp(self._compute_a_mp(sigma, q, order))
|
||||
np.testing.assert_allclose(log_a, log_a_mp, rtol=1e-4)
|
||||
|
||||
def test_get_privacy_spent_check_target_delta(self):
|
||||
orders = range(2, 33)
|
||||
rdp = rdp_accountant.compute_rdp(0.01, 4, 10000, orders)
|
||||
eps, _, opt_order = rdp_accountant.get_privacy_spent(
|
||||
orders, rdp, target_delta=1e-5)
|
||||
self.assertAlmostEqual(eps, 1.258575, places=5)
|
||||
self.assertEqual(opt_order, 20)
|
||||
|
||||
def test_get_privacy_spent_check_target_eps(self):
|
||||
orders = range(2, 33)
|
||||
rdp = rdp_accountant.compute_rdp(0.01, 4, 10000, orders)
|
||||
_, delta, opt_order = rdp_accountant.get_privacy_spent(
|
||||
orders, rdp, target_eps=1.258575)
|
||||
self.assertAlmostEqual(delta, 1e-5)
|
||||
self.assertEqual(opt_order, 20)
|
||||
|
||||
def test_check_composition(self):
|
||||
orders = (1.25, 1.5, 1.75, 2., 2.5, 3., 4., 5., 6., 7., 8., 10., 12., 14.,
|
||||
16., 20., 24., 28., 32., 64., 256.)
|
||||
|
||||
rdp = rdp_accountant.compute_rdp(q=1e-4,
|
||||
noise_multiplier=.4,
|
||||
steps=40000,
|
||||
orders=orders)
|
||||
|
||||
eps, _, opt_order = rdp_accountant.get_privacy_spent(orders, rdp,
|
||||
target_delta=1e-6)
|
||||
|
||||
rdp += rdp_accountant.compute_rdp(q=0.1,
|
||||
noise_multiplier=2,
|
||||
steps=100,
|
||||
orders=orders)
|
||||
eps, _, opt_order = rdp_accountant.get_privacy_spent(orders, rdp,
|
||||
target_delta=1e-5)
|
||||
self.assertAlmostEqual(eps, 8.509656, places=5)
|
||||
self.assertEqual(opt_order, 2.5)
|
||||
|
||||
def test_compute_rdp_from_ledger(self):
|
||||
orders = range(2, 33)
|
||||
q = 0.1
|
||||
n = 1000
|
||||
l2_norm_clip = 3.14159
|
||||
noise_stddev = 2.71828
|
||||
steps = 3
|
||||
|
||||
query_entry = privacy_ledger.GaussianSumQueryEntry(
|
||||
l2_norm_clip, noise_stddev)
|
||||
ledger = [privacy_ledger.SampleEntry(n, q, [query_entry])] * steps
|
||||
|
||||
z = noise_stddev / l2_norm_clip
|
||||
rdp = rdp_accountant.compute_rdp(q, z, steps, orders)
|
||||
rdp_from_ledger = rdp_accountant.compute_rdp_from_ledger(ledger, orders)
|
||||
self.assertSequenceAlmostEqual(rdp, rdp_from_ledger)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
absltest.main()
|
134
tensorflow_privacy/privacy/analysis/tensor_buffer.py
Normal file
134
tensorflow_privacy/privacy/analysis/tensor_buffer.py
Normal file
|
@ -0,0 +1,134 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""A lightweight buffer for maintaining tensors."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class TensorBuffer(object):
|
||||
"""A lightweight buffer for maintaining lists.
|
||||
|
||||
The TensorBuffer accumulates tensors of the given shape into a tensor (whose
|
||||
rank is one more than that of the given shape) via calls to `append`. The
|
||||
current value of the accumulated tensor can be extracted via the property
|
||||
`values`.
|
||||
"""
|
||||
|
||||
def __init__(self, capacity, shape, dtype=tf.int32, name=None):
|
||||
"""Initializes the TensorBuffer.
|
||||
|
||||
Args:
|
||||
capacity: Initial capacity. Buffer will double in capacity each time it is
|
||||
filled to capacity.
|
||||
shape: The shape (as tuple or list) of the tensors to accumulate.
|
||||
dtype: The type of the tensors.
|
||||
name: A string name for the variable_scope used.
|
||||
|
||||
Raises:
|
||||
ValueError: If the shape is empty (specifies scalar shape).
|
||||
"""
|
||||
shape = list(shape)
|
||||
self._rank = len(shape)
|
||||
self._name = name
|
||||
self._dtype = dtype
|
||||
if not self._rank:
|
||||
raise ValueError('Shape cannot be scalar.')
|
||||
shape = [capacity] + shape
|
||||
|
||||
with tf.variable_scope(self._name):
|
||||
# We need to use a placeholder as the initial value to allow resizing.
|
||||
self._buffer = tf.Variable(
|
||||
initial_value=tf.placeholder_with_default(
|
||||
tf.zeros(shape, dtype), shape=None),
|
||||
trainable=False,
|
||||
name='buffer',
|
||||
use_resource=True)
|
||||
self._current_size = tf.Variable(
|
||||
initial_value=0, dtype=tf.int32, trainable=False, name='current_size')
|
||||
self._capacity = tf.Variable(
|
||||
initial_value=capacity,
|
||||
dtype=tf.int32,
|
||||
trainable=False,
|
||||
name='capacity')
|
||||
|
||||
def append(self, value):
|
||||
"""Appends a new tensor to the end of the buffer.
|
||||
|
||||
Args:
|
||||
value: The tensor to append. Must match the shape specified in the
|
||||
initializer.
|
||||
|
||||
Returns:
|
||||
An op appending the new tensor to the end of the buffer.
|
||||
"""
|
||||
|
||||
def _double_capacity():
|
||||
"""Doubles the capacity of the current tensor buffer."""
|
||||
padding = tf.zeros_like(self._buffer, self._buffer.dtype)
|
||||
new_buffer = tf.concat([self._buffer, padding], axis=0)
|
||||
if tf.executing_eagerly():
|
||||
with tf.variable_scope(self._name, reuse=True):
|
||||
self._buffer = tf.get_variable(
|
||||
name='buffer',
|
||||
dtype=self._dtype,
|
||||
initializer=new_buffer,
|
||||
trainable=False)
|
||||
return self._buffer, tf.assign(self._capacity,
|
||||
tf.multiply(self._capacity, 2))
|
||||
else:
|
||||
return tf.assign(
|
||||
self._buffer, new_buffer,
|
||||
validate_shape=False), tf.assign(self._capacity,
|
||||
tf.multiply(self._capacity, 2))
|
||||
|
||||
update_buffer, update_capacity = tf.cond(
|
||||
tf.equal(self._current_size, self._capacity),
|
||||
_double_capacity, lambda: (self._buffer, self._capacity))
|
||||
|
||||
with tf.control_dependencies([update_buffer, update_capacity]):
|
||||
with tf.control_dependencies([
|
||||
tf.assert_less(
|
||||
self._current_size,
|
||||
self._capacity,
|
||||
message='Appending past end of TensorBuffer.'),
|
||||
tf.assert_equal(
|
||||
tf.shape(value),
|
||||
tf.shape(self._buffer)[1:],
|
||||
message='Appending value of inconsistent shape.')
|
||||
]):
|
||||
with tf.control_dependencies(
|
||||
[tf.assign(self._buffer[self._current_size, :], value)]):
|
||||
return tf.assign_add(self._current_size, 1)
|
||||
|
||||
@property
|
||||
def values(self):
|
||||
"""Returns the accumulated tensor."""
|
||||
begin_value = tf.zeros([self._rank + 1], dtype=tf.int32)
|
||||
value_size = tf.concat([[self._current_size],
|
||||
tf.constant(-1, tf.int32, [self._rank])], 0)
|
||||
return tf.slice(self._buffer, begin_value, value_size)
|
||||
|
||||
@property
|
||||
def current_size(self):
|
||||
"""Returns the current number of tensors in the buffer."""
|
||||
return self._current_size
|
||||
|
||||
@property
|
||||
def capacity(self):
|
||||
"""Returns the current capacity of the buffer."""
|
||||
return self._capacity
|
|
@ -0,0 +1,84 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for tensor_buffer in eager mode."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import tensor_buffer
|
||||
|
||||
tf.enable_eager_execution()
|
||||
|
||||
|
||||
class TensorBufferTest(tf.test.TestCase):
|
||||
"""Tests for TensorBuffer in eager mode."""
|
||||
|
||||
def test_basic(self):
|
||||
size, shape = 2, [2, 3]
|
||||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
|
||||
value1 = [[1, 2, 3], [4, 5, 6]]
|
||||
my_buffer.append(value1)
|
||||
self.assertAllEqual(my_buffer.values.numpy(), [value1])
|
||||
|
||||
value2 = [[4, 5, 6], [7, 8, 9]]
|
||||
my_buffer.append(value2)
|
||||
self.assertAllEqual(my_buffer.values.numpy(), [value1, value2])
|
||||
|
||||
def test_fail_on_scalar(self):
|
||||
with self.assertRaisesRegexp(ValueError, 'Shape cannot be scalar.'):
|
||||
tensor_buffer.TensorBuffer(1, ())
|
||||
|
||||
def test_fail_on_inconsistent_shape(self):
|
||||
size, shape = 1, [2, 3]
|
||||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
|
||||
with self.assertRaisesRegexp(
|
||||
tf.errors.InvalidArgumentError,
|
||||
'Appending value of inconsistent shape.'):
|
||||
my_buffer.append(tf.ones(shape=[3, 4], dtype=tf.int32))
|
||||
|
||||
def test_resize(self):
|
||||
size, shape = 2, [2, 3]
|
||||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
|
||||
# Append three buffers. Third one should succeed after resizing.
|
||||
value1 = [[1, 2, 3], [4, 5, 6]]
|
||||
my_buffer.append(value1)
|
||||
self.assertAllEqual(my_buffer.values.numpy(), [value1])
|
||||
self.assertAllEqual(my_buffer.current_size.numpy(), 1)
|
||||
self.assertAllEqual(my_buffer.capacity.numpy(), 2)
|
||||
|
||||
value2 = [[4, 5, 6], [7, 8, 9]]
|
||||
my_buffer.append(value2)
|
||||
self.assertAllEqual(my_buffer.values.numpy(), [value1, value2])
|
||||
self.assertAllEqual(my_buffer.current_size.numpy(), 2)
|
||||
self.assertAllEqual(my_buffer.capacity.numpy(), 2)
|
||||
|
||||
value3 = [[7, 8, 9], [10, 11, 12]]
|
||||
my_buffer.append(value3)
|
||||
self.assertAllEqual(my_buffer.values.numpy(), [value1, value2, value3])
|
||||
self.assertAllEqual(my_buffer.current_size.numpy(), 3)
|
||||
# Capacity should have doubled.
|
||||
self.assertAllEqual(my_buffer.capacity.numpy(), 4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
|
@ -0,0 +1,72 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for tensor_buffer in graph mode."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import tensor_buffer
|
||||
|
||||
|
||||
class TensorBufferTest(tf.test.TestCase):
|
||||
"""Tests for TensorBuffer in graph mode."""
|
||||
|
||||
def test_noresize(self):
|
||||
"""Test buffer does not resize if capacity is not exceeded."""
|
||||
with self.cached_session() as sess:
|
||||
size, shape = 2, [2, 3]
|
||||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
value1 = [[1, 2, 3], [4, 5, 6]]
|
||||
with tf.control_dependencies([my_buffer.append(value1)]):
|
||||
value2 = [[7, 8, 9], [10, 11, 12]]
|
||||
with tf.control_dependencies([my_buffer.append(value2)]):
|
||||
values = my_buffer.values
|
||||
current_size = my_buffer.current_size
|
||||
capacity = my_buffer.capacity
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
|
||||
v, cs, cap = sess.run([values, current_size, capacity])
|
||||
self.assertAllEqual(v, [value1, value2])
|
||||
self.assertEqual(cs, 2)
|
||||
self.assertEqual(cap, 2)
|
||||
|
||||
def test_resize(self):
|
||||
"""Test buffer resizes if capacity is exceeded."""
|
||||
with self.cached_session() as sess:
|
||||
size, shape = 2, [2, 3]
|
||||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
value1 = [[1, 2, 3], [4, 5, 6]]
|
||||
with tf.control_dependencies([my_buffer.append(value1)]):
|
||||
value2 = [[7, 8, 9], [10, 11, 12]]
|
||||
with tf.control_dependencies([my_buffer.append(value2)]):
|
||||
value3 = [[13, 14, 15], [16, 17, 18]]
|
||||
with tf.control_dependencies([my_buffer.append(value3)]):
|
||||
values = my_buffer.values
|
||||
current_size = my_buffer.current_size
|
||||
capacity = my_buffer.capacity
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
|
||||
v, cs, cap = sess.run([values, current_size, capacity])
|
||||
self.assertAllEqual(v, [value1, value2, value3])
|
||||
self.assertEqual(cs, 3)
|
||||
self.assertEqual(cap, 4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
67
tensorflow_privacy/privacy/bolt_on/README.md
Normal file
67
tensorflow_privacy/privacy/bolt_on/README.md
Normal file
|
@ -0,0 +1,67 @@
|
|||
# BoltOn Subpackage
|
||||
|
||||
This package contains source code for the BoltOn method, a particular
|
||||
differential-privacy (DP) technique that uses output perturbations and
|
||||
leverages additional assumptions to provide a new way of approaching the
|
||||
privacy guarantees.
|
||||
|
||||
## BoltOn Description
|
||||
|
||||
This method uses 4 key steps to achieve privacy guarantees:
|
||||
1. Adds noise to weights after training (output perturbation).
|
||||
2. Projects weights to R, the radius of the hypothesis space,
|
||||
after each batch. This value is configurable by the user.
|
||||
3. Limits learning rate
|
||||
4. Uses a strongly convex loss function (see compile)
|
||||
|
||||
For more details on the strong convexity requirements, see:
|
||||
Bolt-on Differential Privacy for Scalable Stochastic Gradient
|
||||
Descent-based Analytics by Xi Wu et al. at https://arxiv.org/pdf/1606.04722.pdf
|
||||
|
||||
## Why BoltOn?
|
||||
|
||||
The major difference for the BoltOn method is that it injects noise post model
|
||||
convergence, rather than noising gradients or weights during training. This
|
||||
approach requires some additional constraints listed in the Description.
|
||||
Should the use-case and model satisfy these constraints, this is another
|
||||
approach that can be trained to maximize utility while maintaining the privacy.
|
||||
The paper describes in detail the advantages and disadvantages of this approach
|
||||
and its results compared to some other methods, namely noising at each iteration
|
||||
and no noising.
|
||||
|
||||
## Tutorials
|
||||
|
||||
This package has a tutorial that can be found in the root tutorials directory,
|
||||
under `bolton_tutorial.py`.
|
||||
|
||||
## Contribution
|
||||
|
||||
This package was initially contributed by Georgian Partners with the hope of
|
||||
growing the tensorflow/privacy library. There are several rich use cases for
|
||||
delta-epsilon privacy in machine learning, some of which can be explored here:
|
||||
https://medium.com/apache-mxnet/epsilon-differential-privacy-for-machine-learning-using-mxnet-a4270fe3865e
|
||||
https://arxiv.org/pdf/1811.04911.pdf
|
||||
|
||||
## Stability
|
||||
|
||||
As we are pegged on tensorflow2.0, this package may encounter stability
|
||||
issues in the ongoing development of tensorflow2.0.
|
||||
|
||||
This sub-package is currently stable for 2.0.0a0, 2.0.0b0, and 2.0.0.b1 If you
|
||||
would like to use this subpackage, please do use one of these versions as we
|
||||
cannot guarantee it will work for all latest releases. If you do find issues,
|
||||
feel free to raise an issue to the contributors listed below.
|
||||
|
||||
## Contacts
|
||||
|
||||
In addition to the maintainers of tensorflow/privacy listed in the root
|
||||
README.md, please feel free to contact members of Georgian Partners. In
|
||||
particular,
|
||||
|
||||
* Georgian Partners(@georgianpartners)
|
||||
* Ji Chao Zhang(@Jichaogp)
|
||||
* Christopher Choquette(@cchoquette)
|
||||
|
||||
## Copyright
|
||||
|
||||
Copyright 2019 - Google LLC
|
29
tensorflow_privacy/privacy/bolt_on/__init__.py
Normal file
29
tensorflow_privacy/privacy/bolt_on/__init__.py
Normal file
|
@ -0,0 +1,29 @@
|
|||
# Copyright 2019, The TensorFlow Privacy Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""BoltOn Method for privacy."""
|
||||
import sys
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion("2.0.0"):
|
||||
raise ImportError("Please upgrade your version "
|
||||
"of tensorflow from: {0} to at least 2.0.0 to "
|
||||
"use privacy/bolt_on".format(LooseVersion(tf.__version__)))
|
||||
if hasattr(sys, "skip_tf_privacy_import"): # Useful for standalone scripts.
|
||||
pass
|
||||
else:
|
||||
from tensorflow_privacy.privacy.bolt_on.models import BoltOnModel # pylint: disable=g-import-not-at-top
|
||||
from tensorflow_privacy.privacy.bolt_on.optimizers import BoltOn # pylint: disable=g-import-not-at-top
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexHuber # pylint: disable=g-import-not-at-top
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexBinaryCrossentropy # pylint: disable=g-import-not-at-top
|
304
tensorflow_privacy/privacy/bolt_on/losses.py
Normal file
304
tensorflow_privacy/privacy/bolt_on/losses.py
Normal file
|
@ -0,0 +1,304 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Loss functions for BoltOn method."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.framework import ops as _ops
|
||||
from tensorflow.python.keras import losses
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from tensorflow.python.keras.utils import losses_utils
|
||||
from tensorflow.python.platform import tf_logging as logging
|
||||
|
||||
|
||||
class StrongConvexMixin: # pylint: disable=old-style-class
|
||||
"""Strong Convex Mixin base class.
|
||||
|
||||
Strong Convex Mixin base class for any loss function that will be used with
|
||||
BoltOn model. Subclasses must be strongly convex and implement the
|
||||
associated constants. They must also conform to the requirements of tf losses
|
||||
(see super class).
|
||||
|
||||
For more details on the strong convexity requirements, see:
|
||||
Bolt-on Differential Privacy for Scalable Stochastic Gradient
|
||||
Descent-based Analytics by Xi Wu et. al.
|
||||
"""
|
||||
|
||||
def radius(self):
|
||||
"""Radius, R, of the hypothesis space W.
|
||||
|
||||
W is a convex set that forms the hypothesis space.
|
||||
|
||||
Returns:
|
||||
R
|
||||
"""
|
||||
raise NotImplementedError("Radius not implemented for StrongConvex Loss"
|
||||
"function: %s" % str(self.__class__.__name__))
|
||||
|
||||
def gamma(self):
|
||||
"""Returns strongly convex parameter, gamma."""
|
||||
raise NotImplementedError("Gamma not implemented for StrongConvex Loss"
|
||||
"function: %s" % str(self.__class__.__name__))
|
||||
|
||||
def beta(self, class_weight):
|
||||
"""Smoothness, beta.
|
||||
|
||||
Args:
|
||||
class_weight: the class weights as scalar or 1d tensor, where its
|
||||
dimensionality is equal to the number of outputs.
|
||||
|
||||
Returns:
|
||||
Beta
|
||||
"""
|
||||
raise NotImplementedError("Beta not implemented for StrongConvex Loss"
|
||||
"function: %s" % str(self.__class__.__name__))
|
||||
|
||||
def lipchitz_constant(self, class_weight):
|
||||
"""Lipchitz constant, L.
|
||||
|
||||
Args:
|
||||
class_weight: class weights used
|
||||
|
||||
Returns: L
|
||||
"""
|
||||
raise NotImplementedError("lipchitz constant not implemented for "
|
||||
"StrongConvex Loss"
|
||||
"function: %s" % str(self.__class__.__name__))
|
||||
|
||||
def kernel_regularizer(self):
|
||||
"""Returns the kernel_regularizer to be used.
|
||||
|
||||
Any subclass should override this method if they want a kernel_regularizer
|
||||
(if required for the loss function to be StronglyConvex.
|
||||
"""
|
||||
return None
|
||||
|
||||
def max_class_weight(self, class_weight, dtype):
|
||||
"""The maximum weighting in class weights (max value) as a scalar tensor.
|
||||
|
||||
Args:
|
||||
class_weight: class weights used
|
||||
dtype: the data type for tensor conversions.
|
||||
|
||||
Returns:
|
||||
maximum class weighting as tensor scalar
|
||||
"""
|
||||
class_weight = _ops.convert_to_tensor_v2(class_weight, dtype)
|
||||
return tf.math.reduce_max(class_weight)
|
||||
|
||||
|
||||
class StrongConvexHuber(losses.Loss, StrongConvexMixin):
|
||||
"""Strong Convex version of Huber loss using l2 weight regularization."""
|
||||
|
||||
def __init__(self,
|
||||
reg_lambda,
|
||||
c_arg,
|
||||
radius_constant,
|
||||
delta,
|
||||
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||
dtype=tf.float32):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
reg_lambda: Weight regularization constant
|
||||
c_arg: Penalty parameter C of the loss term
|
||||
radius_constant: constant defining the length of the radius
|
||||
delta: delta value in huber loss. When to switch from quadratic to
|
||||
absolute deviation.
|
||||
reduction: reduction type to use. See super class
|
||||
dtype: tf datatype to use for tensor conversions.
|
||||
|
||||
Returns:
|
||||
Loss values per sample.
|
||||
"""
|
||||
if c_arg <= 0:
|
||||
raise ValueError("c: {0}, should be >= 0".format(c_arg))
|
||||
if reg_lambda <= 0:
|
||||
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
if radius_constant <= 0:
|
||||
raise ValueError("radius_constant: {0}, should be >= 0".format(
|
||||
radius_constant
|
||||
))
|
||||
if delta <= 0:
|
||||
raise ValueError("delta: {0}, should be >= 0".format(
|
||||
delta
|
||||
))
|
||||
self.C = c_arg # pylint: disable=invalid-name
|
||||
self.delta = delta
|
||||
self.radius_constant = radius_constant
|
||||
self.dtype = dtype
|
||||
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
super(StrongConvexHuber, self).__init__(
|
||||
name="strongconvexhuber",
|
||||
reduction=reduction,
|
||||
)
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
"""Computes loss.
|
||||
|
||||
Args:
|
||||
y_true: Ground truth values. One hot encoded using -1 and 1.
|
||||
y_pred: The predicted values.
|
||||
|
||||
Returns:
|
||||
Loss values per sample.
|
||||
"""
|
||||
h = self.delta
|
||||
z = y_pred * y_true
|
||||
one = tf.constant(1, dtype=self.dtype)
|
||||
four = tf.constant(4, dtype=self.dtype)
|
||||
|
||||
if z > one + h: # pylint: disable=no-else-return
|
||||
return _ops.convert_to_tensor_v2(0, dtype=self.dtype)
|
||||
elif tf.math.abs(one - z) <= h:
|
||||
return one / (four * h) * tf.math.pow(one + h - z, 2)
|
||||
return one - z
|
||||
|
||||
def radius(self):
|
||||
"""See super class."""
|
||||
return self.radius_constant / self.reg_lambda
|
||||
|
||||
def gamma(self):
|
||||
"""See super class."""
|
||||
return self.reg_lambda
|
||||
|
||||
def beta(self, class_weight):
|
||||
"""See super class."""
|
||||
max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
delta = _ops.convert_to_tensor_v2(self.delta,
|
||||
dtype=self.dtype
|
||||
)
|
||||
return self.C * max_class_weight / (delta *
|
||||
tf.constant(2, dtype=self.dtype)) + \
|
||||
self.reg_lambda
|
||||
|
||||
def lipchitz_constant(self, class_weight):
|
||||
"""See super class."""
|
||||
# if class_weight is provided,
|
||||
# it should be a vector of the same size of number of classes
|
||||
max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
lc = self.C * max_class_weight + \
|
||||
self.reg_lambda * self.radius()
|
||||
return lc
|
||||
|
||||
def kernel_regularizer(self):
|
||||
"""Return l2 loss using 0.5*reg_lambda as the l2 term (as desired).
|
||||
|
||||
L2 regularization is required for this loss function to be strongly convex.
|
||||
|
||||
Returns:
|
||||
The L2 regularizer layer for this loss function, with regularizer constant
|
||||
set to half the 0.5 * reg_lambda.
|
||||
"""
|
||||
return L1L2(l2=self.reg_lambda/2)
|
||||
|
||||
|
||||
class StrongConvexBinaryCrossentropy(
|
||||
losses.BinaryCrossentropy,
|
||||
StrongConvexMixin
|
||||
):
|
||||
"""Strongly Convex BinaryCrossentropy loss using l2 weight regularization."""
|
||||
|
||||
def __init__(self,
|
||||
reg_lambda,
|
||||
c_arg,
|
||||
radius_constant,
|
||||
from_logits=True,
|
||||
label_smoothing=0,
|
||||
reduction=losses_utils.ReductionV2.SUM_OVER_BATCH_SIZE,
|
||||
dtype=tf.float32):
|
||||
"""StrongConvexBinaryCrossentropy class.
|
||||
|
||||
Args:
|
||||
reg_lambda: Weight regularization constant
|
||||
c_arg: Penalty parameter C of the loss term
|
||||
radius_constant: constant defining the length of the radius
|
||||
from_logits: True if the input are unscaled logits. False if they are
|
||||
already scaled.
|
||||
label_smoothing: amount of smoothing to perform on labels
|
||||
relaxation of trust in labels, e.g. (1 -> 1-x, 0 -> 0+x). Note, the
|
||||
impact of this parameter's effect on privacy is not known and thus the
|
||||
default should be used.
|
||||
reduction: reduction type to use. See super class
|
||||
dtype: tf datatype to use for tensor conversions.
|
||||
"""
|
||||
if label_smoothing != 0:
|
||||
logging.warning("The impact of label smoothing on privacy is unknown. "
|
||||
"Use label smoothing at your own risk as it may not "
|
||||
"guarantee privacy.")
|
||||
|
||||
if reg_lambda <= 0:
|
||||
raise ValueError("reg lambda: {0} must be positive".format(reg_lambda))
|
||||
if c_arg <= 0:
|
||||
raise ValueError("c: {0}, should be >= 0".format(c_arg))
|
||||
if radius_constant <= 0:
|
||||
raise ValueError("radius_constant: {0}, should be >= 0".format(
|
||||
radius_constant
|
||||
))
|
||||
self.dtype = dtype
|
||||
self.C = c_arg # pylint: disable=invalid-name
|
||||
self.reg_lambda = tf.constant(reg_lambda, dtype=self.dtype)
|
||||
super(StrongConvexBinaryCrossentropy, self).__init__(
|
||||
reduction=reduction,
|
||||
name="strongconvexbinarycrossentropy",
|
||||
from_logits=from_logits,
|
||||
label_smoothing=label_smoothing,
|
||||
)
|
||||
self.radius_constant = radius_constant
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
"""Computes loss.
|
||||
|
||||
Args:
|
||||
y_true: Ground truth values.
|
||||
y_pred: The predicted values.
|
||||
|
||||
Returns:
|
||||
Loss values per sample.
|
||||
"""
|
||||
loss = super(StrongConvexBinaryCrossentropy, self).call(y_true, y_pred)
|
||||
loss = loss * self.C
|
||||
return loss
|
||||
|
||||
def radius(self):
|
||||
"""See super class."""
|
||||
return self.radius_constant / self.reg_lambda
|
||||
|
||||
def gamma(self):
|
||||
"""See super class."""
|
||||
return self.reg_lambda
|
||||
|
||||
def beta(self, class_weight):
|
||||
"""See super class."""
|
||||
max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
return self.C * max_class_weight + self.reg_lambda
|
||||
|
||||
def lipchitz_constant(self, class_weight):
|
||||
"""See super class."""
|
||||
max_class_weight = self.max_class_weight(class_weight, self.dtype)
|
||||
return self.C * max_class_weight + self.reg_lambda * self.radius()
|
||||
|
||||
def kernel_regularizer(self):
|
||||
"""Return l2 loss using 0.5*reg_lambda as the l2 term (as desired).
|
||||
|
||||
L2 regularization is required for this loss function to be strongly convex.
|
||||
|
||||
Returns:
|
||||
The L2 regularizer layer for this loss function, with regularizer constant
|
||||
set to half the 0.5 * reg_lambda.
|
||||
"""
|
||||
return L1L2(l2=self.reg_lambda/2)
|
431
tensorflow_privacy/privacy/bolt_on/losses_test.py
Normal file
431
tensorflow_privacy/privacy/bolt_on/losses_test.py
Normal file
|
@ -0,0 +1,431 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Unit testing for losses."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from contextlib import contextmanager # pylint: disable=g-importing-member
|
||||
from io import StringIO # pylint: disable=g-importing-member
|
||||
import sys
|
||||
from absl.testing import parameterized
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.keras import keras_parameterized
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexBinaryCrossentropy
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexHuber
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexMixin
|
||||
|
||||
|
||||
@contextmanager
|
||||
def captured_output():
|
||||
"""Capture std_out and std_err within context."""
|
||||
new_out, new_err = StringIO(), StringIO()
|
||||
old_out, old_err = sys.stdout, sys.stderr
|
||||
try:
|
||||
sys.stdout, sys.stderr = new_out, new_err
|
||||
yield sys.stdout, sys.stderr
|
||||
finally:
|
||||
sys.stdout, sys.stderr = old_out, old_err
|
||||
|
||||
|
||||
class StrongConvexMixinTests(keras_parameterized.TestCase):
|
||||
"""Tests for the StrongConvexMixin."""
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'beta not implemented',
|
||||
'fn': 'beta',
|
||||
'args': [1]},
|
||||
{'testcase_name': 'gamma not implemented',
|
||||
'fn': 'gamma',
|
||||
'args': []},
|
||||
{'testcase_name': 'lipchitz not implemented',
|
||||
'fn': 'lipchitz_constant',
|
||||
'args': [1]},
|
||||
{'testcase_name': 'radius not implemented',
|
||||
'fn': 'radius',
|
||||
'args': []},
|
||||
])
|
||||
|
||||
def test_not_implemented(self, fn, args):
|
||||
"""Test that the given fn's are not implemented on the mixin.
|
||||
|
||||
Args:
|
||||
fn: fn on Mixin to test
|
||||
args: arguments to fn of Mixin
|
||||
"""
|
||||
with self.assertRaises(NotImplementedError):
|
||||
loss = StrongConvexMixin()
|
||||
getattr(loss, fn, None)(*args)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'radius not implemented',
|
||||
'fn': 'kernel_regularizer',
|
||||
'args': []},
|
||||
])
|
||||
def test_return_none(self, fn, args):
|
||||
"""Test that fn of Mixin returns None.
|
||||
|
||||
Args:
|
||||
fn: fn of Mixin to test
|
||||
args: arguments to fn of Mixin
|
||||
"""
|
||||
loss = StrongConvexMixin()
|
||||
ret = getattr(loss, fn, None)(*args)
|
||||
self.assertEqual(ret, None)
|
||||
|
||||
|
||||
class BinaryCrossesntropyTests(keras_parameterized.TestCase):
|
||||
"""tests for BinaryCrossesntropy StrongConvex loss."""
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal',
|
||||
'reg_lambda': 1,
|
||||
'C': 1,
|
||||
'radius_constant': 1
|
||||
}, # pylint: disable=invalid-name
|
||||
])
|
||||
def test_init_params(self, reg_lambda, C, radius_constant):
|
||||
"""Test initialization for given arguments.
|
||||
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
C: initialization value for C arg
|
||||
radius_constant: initialization value for radius_constant arg
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
loss = StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
|
||||
self.assertIsInstance(loss, StrongConvexBinaryCrossentropy)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'negative c',
|
||||
'reg_lambda': 1,
|
||||
'C': -1,
|
||||
'radius_constant': 1
|
||||
},
|
||||
{'testcase_name': 'negative radius',
|
||||
'reg_lambda': 1,
|
||||
'C': 1,
|
||||
'radius_constant': -1
|
||||
},
|
||||
{'testcase_name': 'negative lambda',
|
||||
'reg_lambda': -1,
|
||||
'C': 1,
|
||||
'radius_constant': 1
|
||||
}, # pylint: disable=invalid-name
|
||||
])
|
||||
def test_bad_init_params(self, reg_lambda, C, radius_constant):
|
||||
"""Test invalid domain for given params. Should return ValueError.
|
||||
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
C: initialization value for C arg
|
||||
radius_constant: initialization value for radius_constant arg
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
with self.assertRaises(ValueError):
|
||||
StrongConvexBinaryCrossentropy(reg_lambda, C, radius_constant)
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
# [] for compatibility with tensorflow loss calculation
|
||||
{'testcase_name': 'both positive',
|
||||
'logits': [10000],
|
||||
'y_true': [1],
|
||||
'result': 0,
|
||||
},
|
||||
{'testcase_name': 'positive gradient negative logits',
|
||||
'logits': [-10000],
|
||||
'y_true': [1],
|
||||
'result': 10000,
|
||||
},
|
||||
{'testcase_name': 'positivee gradient positive logits',
|
||||
'logits': [10000],
|
||||
'y_true': [0],
|
||||
'result': 10000,
|
||||
},
|
||||
{'testcase_name': 'both negative',
|
||||
'logits': [-10000],
|
||||
'y_true': [0],
|
||||
'result': 0
|
||||
},
|
||||
])
|
||||
def test_calculation(self, logits, y_true, result):
|
||||
"""Test the call method to ensure it returns the correct value.
|
||||
|
||||
Args:
|
||||
logits: unscaled output of model
|
||||
y_true: label
|
||||
result: correct loss calculation value
|
||||
"""
|
||||
logits = tf.Variable(logits, False, dtype=tf.float32)
|
||||
y_true = tf.Variable(y_true, False, dtype=tf.float32)
|
||||
loss = StrongConvexBinaryCrossentropy(0.00001, 1, 1)
|
||||
loss = loss(y_true, logits)
|
||||
self.assertEqual(loss.numpy(), result)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'beta',
|
||||
'init_args': [1, 1, 1],
|
||||
'fn': 'beta',
|
||||
'args': [1],
|
||||
'result': tf.constant(2, dtype=tf.float32)
|
||||
},
|
||||
{'testcase_name': 'gamma',
|
||||
'fn': 'gamma',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [],
|
||||
'result': tf.constant(1, dtype=tf.float32),
|
||||
},
|
||||
{'testcase_name': 'lipchitz constant',
|
||||
'fn': 'lipchitz_constant',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [1],
|
||||
'result': tf.constant(2, dtype=tf.float32),
|
||||
},
|
||||
{'testcase_name': 'kernel regularizer',
|
||||
'fn': 'kernel_regularizer',
|
||||
'init_args': [1, 1, 1],
|
||||
'args': [],
|
||||
'result': L1L2(l2=0.5),
|
||||
},
|
||||
])
|
||||
def test_fns(self, init_args, fn, args, result):
|
||||
"""Test that fn of BinaryCrossentropy loss returns the correct result.
|
||||
|
||||
Args:
|
||||
init_args: init values for loss instance
|
||||
fn: the fn to test
|
||||
args: the arguments to above function
|
||||
result: the correct result from the fn
|
||||
"""
|
||||
loss = StrongConvexBinaryCrossentropy(*init_args)
|
||||
expected = getattr(loss, fn, lambda: 'fn not found')(*args)
|
||||
if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor
|
||||
expected = expected.numpy()
|
||||
result = result.numpy()
|
||||
if hasattr(expected, 'l2') and hasattr(result, 'l2'): # both l2 regularizer
|
||||
expected = expected.l2
|
||||
result = result.l2
|
||||
self.assertEqual(expected, result)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'label_smoothing',
|
||||
'init_args': [1, 1, 1, True, 0.1],
|
||||
'fn': None,
|
||||
'args': None,
|
||||
'print_res': 'The impact of label smoothing on privacy is unknown.'
|
||||
},
|
||||
])
|
||||
def test_prints(self, init_args, fn, args, print_res):
|
||||
"""Test logger warning from StrongConvexBinaryCrossentropy.
|
||||
|
||||
Args:
|
||||
init_args: arguments to init the object with.
|
||||
fn: function to test
|
||||
args: arguments to above function
|
||||
print_res: print result that should have been printed.
|
||||
"""
|
||||
with captured_output() as (out, err): # pylint: disable=unused-variable
|
||||
loss = StrongConvexBinaryCrossentropy(*init_args)
|
||||
if fn is not None:
|
||||
getattr(loss, fn, lambda *arguments: print('error'))(*args)
|
||||
self.assertRegexMatch(err.getvalue().strip(), [print_res])
|
||||
|
||||
|
||||
class HuberTests(keras_parameterized.TestCase):
|
||||
"""tests for BinaryCrossesntropy StrongConvex loss."""
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1,
|
||||
},
|
||||
])
|
||||
def test_init_params(self, reg_lambda, c, radius_constant, delta):
|
||||
"""Test initialization for given arguments.
|
||||
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
c: initialization value for C arg
|
||||
radius_constant: initialization value for radius_constant arg
|
||||
delta: the delta parameter for the huber loss
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
loss = StrongConvexHuber(reg_lambda, c, radius_constant, delta)
|
||||
self.assertIsInstance(loss, StrongConvexHuber)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'negative c',
|
||||
'reg_lambda': 1,
|
||||
'c': -1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1
|
||||
},
|
||||
{'testcase_name': 'negative radius',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': -1,
|
||||
'delta': 1
|
||||
},
|
||||
{'testcase_name': 'negative lambda',
|
||||
'reg_lambda': -1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': 1
|
||||
},
|
||||
{'testcase_name': 'negative delta',
|
||||
'reg_lambda': 1,
|
||||
'c': 1,
|
||||
'radius_constant': 1,
|
||||
'delta': -1
|
||||
},
|
||||
])
|
||||
def test_bad_init_params(self, reg_lambda, c, radius_constant, delta):
|
||||
"""Test invalid domain for given params. Should return ValueError.
|
||||
|
||||
Args:
|
||||
reg_lambda: initialization value for reg_lambda arg
|
||||
c: initialization value for C arg
|
||||
radius_constant: initialization value for radius_constant arg
|
||||
delta: the delta parameter for the huber loss
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
with self.assertRaises(ValueError):
|
||||
StrongConvexHuber(reg_lambda, c, radius_constant, delta)
|
||||
|
||||
# test the bounds and test varied delta's
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'delta=1,y_true=1 z>1+h decision boundary',
|
||||
'logits': 2.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 0,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=1 z<1+h decision boundary',
|
||||
'logits': 1.9,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 0.01*0.25,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=1 1-z< h decision boundary',
|
||||
'logits': 0.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 1.9**2 * 0.25,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=1 z < 1-h decision boundary',
|
||||
'logits': -0.1,
|
||||
'y_true': 1,
|
||||
'delta': 1,
|
||||
'result': 1.1,
|
||||
},
|
||||
{'testcase_name': 'delta=2,y_true=1 z>1+h decision boundary',
|
||||
'logits': 3.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 0,
|
||||
},
|
||||
{'testcase_name': 'delta=2,y_true=1 z<1+h decision boundary',
|
||||
'logits': 2.9,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 0.01*0.125,
|
||||
},
|
||||
{'testcase_name': 'delta=2,y_true=1 1-z < h decision boundary',
|
||||
'logits': 1.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 1.9**2 * 0.125,
|
||||
},
|
||||
{'testcase_name': 'delta=2,y_true=1 z < 1-h decision boundary',
|
||||
'logits': -1.1,
|
||||
'y_true': 1,
|
||||
'delta': 2,
|
||||
'result': 2.1,
|
||||
},
|
||||
{'testcase_name': 'delta=1,y_true=-1 z>1+h decision boundary',
|
||||
'logits': -2.1,
|
||||
'y_true': -1,
|
||||
'delta': 1,
|
||||
'result': 0,
|
||||
},
|
||||
])
|
||||
def test_calculation(self, logits, y_true, delta, result):
|
||||
"""Test the call method to ensure it returns the correct value.
|
||||
|
||||
Args:
|
||||
logits: unscaled output of model
|
||||
y_true: label
|
||||
delta: delta value for StrongConvexHuber loss.
|
||||
result: correct loss calculation value
|
||||
"""
|
||||
logits = tf.Variable(logits, False, dtype=tf.float32)
|
||||
y_true = tf.Variable(y_true, False, dtype=tf.float32)
|
||||
loss = StrongConvexHuber(0.00001, 1, 1, delta)
|
||||
loss = loss(y_true, logits)
|
||||
self.assertAllClose(loss.numpy(), result)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'beta',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'fn': 'beta',
|
||||
'args': [1],
|
||||
'result': tf.Variable(1.5, dtype=tf.float32)
|
||||
},
|
||||
{'testcase_name': 'gamma',
|
||||
'fn': 'gamma',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [],
|
||||
'result': tf.Variable(1, dtype=tf.float32),
|
||||
},
|
||||
{'testcase_name': 'lipchitz constant',
|
||||
'fn': 'lipchitz_constant',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [1],
|
||||
'result': tf.Variable(2, dtype=tf.float32),
|
||||
},
|
||||
{'testcase_name': 'kernel regularizer',
|
||||
'fn': 'kernel_regularizer',
|
||||
'init_args': [1, 1, 1, 1],
|
||||
'args': [],
|
||||
'result': L1L2(l2=0.5),
|
||||
},
|
||||
])
|
||||
def test_fns(self, init_args, fn, args, result):
|
||||
"""Test that fn of BinaryCrossentropy loss returns the correct result.
|
||||
|
||||
Args:
|
||||
init_args: init values for loss instance
|
||||
fn: the fn to test
|
||||
args: the arguments to above function
|
||||
result: the correct result from the fn
|
||||
"""
|
||||
loss = StrongConvexHuber(*init_args)
|
||||
expected = getattr(loss, fn, lambda: 'fn not found')(*args)
|
||||
if hasattr(expected, 'numpy') and hasattr(result, 'numpy'): # both tensor
|
||||
expected = expected.numpy()
|
||||
result = result.numpy()
|
||||
if hasattr(expected, 'l2') and hasattr(result, 'l2'): # both l2 regularizer
|
||||
expected = expected.l2
|
||||
result = result.l2
|
||||
self.assertEqual(expected, result)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
303
tensorflow_privacy/privacy/bolt_on/models.py
Normal file
303
tensorflow_privacy/privacy/bolt_on/models.py
Normal file
|
@ -0,0 +1,303 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""BoltOn model for Bolt-on method of differentially private ML."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.framework import ops as _ops
|
||||
from tensorflow.python.keras import optimizers
|
||||
from tensorflow.python.keras.models import Model
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexMixin
|
||||
from tensorflow_privacy.privacy.bolt_on.optimizers import BoltOn
|
||||
|
||||
|
||||
class BoltOnModel(Model): # pylint: disable=abstract-method
|
||||
"""BoltOn episilon-delta differential privacy model.
|
||||
|
||||
The privacy guarantees are dependent on the noise that is sampled. Please
|
||||
see the paper linked below for more details.
|
||||
|
||||
Uses 4 key steps to achieve privacy guarantees:
|
||||
1. Adds noise to weights after training (output perturbation).
|
||||
2. Projects weights to R after each batch
|
||||
3. Limits learning rate
|
||||
4. Use a strongly convex loss function (see compile)
|
||||
|
||||
For more details on the strong convexity requirements, see:
|
||||
Bolt-on Differential Privacy for Scalable Stochastic Gradient
|
||||
Descent-based Analytics by Xi Wu et al.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
n_outputs,
|
||||
seed=1,
|
||||
dtype=tf.float32):
|
||||
"""Private constructor.
|
||||
|
||||
Args:
|
||||
n_outputs: number of output classes to predict.
|
||||
seed: random seed to use
|
||||
dtype: data type to use for tensors
|
||||
"""
|
||||
super(BoltOnModel, self).__init__(name='bolton', dynamic=False)
|
||||
if n_outputs <= 0:
|
||||
raise ValueError('n_outputs = {0} is not valid. Must be > 0.'.format(
|
||||
n_outputs
|
||||
))
|
||||
self.n_outputs = n_outputs
|
||||
self.seed = seed
|
||||
self._layers_instantiated = False
|
||||
self._dtype = dtype
|
||||
|
||||
def call(self, inputs): # pylint: disable=arguments-differ
|
||||
"""Forward pass of network.
|
||||
|
||||
Args:
|
||||
inputs: inputs to neural network
|
||||
|
||||
Returns:
|
||||
Output logits for the given inputs.
|
||||
|
||||
"""
|
||||
return self.output_layer(inputs)
|
||||
|
||||
def compile(self,
|
||||
optimizer,
|
||||
loss,
|
||||
kernel_initializer=tf.initializers.GlorotUniform,
|
||||
**kwargs): # pylint: disable=arguments-differ
|
||||
"""See super class. Default optimizer used in BoltOn method is SGD.
|
||||
|
||||
Args:
|
||||
optimizer: The optimizer to use. This will be automatically wrapped
|
||||
with the BoltOn Optimizer.
|
||||
loss: The loss function to use. Must be a StrongConvex loss (extend the
|
||||
StrongConvexMixin).
|
||||
kernel_initializer: The kernel initializer to use for the single layer.
|
||||
**kwargs: kwargs to keras Model.compile. See super.
|
||||
"""
|
||||
if not isinstance(loss, StrongConvexMixin):
|
||||
raise ValueError('loss function must be a Strongly Convex and therefore '
|
||||
'extend the StrongConvexMixin.')
|
||||
if not self._layers_instantiated: # compile may be called multiple times
|
||||
# for instance, if the input/outputs are not defined until fit.
|
||||
self.output_layer = tf.keras.layers.Dense(
|
||||
self.n_outputs,
|
||||
kernel_regularizer=loss.kernel_regularizer(),
|
||||
kernel_initializer=kernel_initializer(),
|
||||
)
|
||||
self._layers_instantiated = True
|
||||
if not isinstance(optimizer, BoltOn):
|
||||
optimizer = optimizers.get(optimizer)
|
||||
optimizer = BoltOn(optimizer, loss)
|
||||
|
||||
super(BoltOnModel, self).compile(optimizer, loss=loss, **kwargs)
|
||||
|
||||
def fit(self,
|
||||
x=None,
|
||||
y=None,
|
||||
batch_size=None,
|
||||
class_weight=None,
|
||||
n_samples=None,
|
||||
epsilon=2,
|
||||
noise_distribution='laplace',
|
||||
steps_per_epoch=None,
|
||||
**kwargs): # pylint: disable=arguments-differ
|
||||
"""Reroutes to super fit with BoltOn delta-epsilon privacy requirements.
|
||||
|
||||
Note, inputs must be normalized s.t. ||x|| < 1.
|
||||
Requirements are as follows:
|
||||
1. Adds noise to weights after training (output perturbation).
|
||||
2. Projects weights to R after each batch
|
||||
3. Limits learning rate
|
||||
4. Use a strongly convex loss function (see compile)
|
||||
See super implementation for more details.
|
||||
|
||||
Args:
|
||||
x: Inputs to fit on, see super.
|
||||
y: Labels to fit on, see super.
|
||||
batch_size: The batch size to use for training, see super.
|
||||
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||
whose dim == n_classes.
|
||||
n_samples: the number of individual samples in x.
|
||||
epsilon: privacy parameter, which trades off between utility an privacy.
|
||||
See the bolt-on paper for more description.
|
||||
noise_distribution: the distribution to pull noise from.
|
||||
steps_per_epoch:
|
||||
**kwargs: kwargs to keras Model.fit. See super.
|
||||
|
||||
Returns:
|
||||
Output from super fit method.
|
||||
"""
|
||||
if class_weight is None:
|
||||
class_weight_ = self.calculate_class_weights(class_weight)
|
||||
else:
|
||||
class_weight_ = class_weight
|
||||
if n_samples is not None:
|
||||
data_size = n_samples
|
||||
elif hasattr(x, 'shape'):
|
||||
data_size = x.shape[0]
|
||||
elif hasattr(x, '__len__'):
|
||||
data_size = len(x)
|
||||
else:
|
||||
data_size = None
|
||||
batch_size_ = self._validate_or_infer_batch_size(batch_size,
|
||||
steps_per_epoch,
|
||||
x)
|
||||
if batch_size_ is None:
|
||||
batch_size_ = 32
|
||||
# inferring batch_size to be passed to optimizer. batch_size must remain its
|
||||
# initial value when passed to super().fit()
|
||||
if batch_size_ is None:
|
||||
raise ValueError('batch_size: {0} is an '
|
||||
'invalid value'.format(batch_size_))
|
||||
if data_size is None:
|
||||
raise ValueError('Could not infer the number of samples. Please pass '
|
||||
'this in using n_samples.')
|
||||
with self.optimizer(noise_distribution,
|
||||
epsilon,
|
||||
self.layers,
|
||||
class_weight_,
|
||||
data_size,
|
||||
batch_size_) as _:
|
||||
out = super(BoltOnModel, self).fit(x=x,
|
||||
y=y,
|
||||
batch_size=batch_size,
|
||||
class_weight=class_weight,
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
**kwargs)
|
||||
return out
|
||||
|
||||
def fit_generator(self,
|
||||
generator,
|
||||
class_weight=None,
|
||||
noise_distribution='laplace',
|
||||
epsilon=2,
|
||||
n_samples=None,
|
||||
steps_per_epoch=None,
|
||||
**kwargs): # pylint: disable=arguments-differ
|
||||
"""Fit with a generator.
|
||||
|
||||
This method is the same as fit except for when the passed dataset
|
||||
is a generator. See super method and fit for more details.
|
||||
|
||||
Args:
|
||||
generator: Inputs generator following Tensorflow guidelines, see super.
|
||||
class_weight: the class weights to be used. Can be a scalar or 1D tensor
|
||||
whose dim == n_classes.
|
||||
noise_distribution: the distribution to get noise from.
|
||||
epsilon: privacy parameter, which trades off utility and privacy. See
|
||||
BoltOn paper for more description.
|
||||
n_samples: number of individual samples in x
|
||||
steps_per_epoch: Number of steps per training epoch, see super.
|
||||
**kwargs: **kwargs
|
||||
|
||||
Returns:
|
||||
Output from super fit_generator method.
|
||||
"""
|
||||
if class_weight is None:
|
||||
class_weight = self.calculate_class_weights(class_weight)
|
||||
if n_samples is not None:
|
||||
data_size = n_samples
|
||||
elif hasattr(generator, 'shape'):
|
||||
data_size = generator.shape[0]
|
||||
elif hasattr(generator, '__len__'):
|
||||
data_size = len(generator)
|
||||
else:
|
||||
raise ValueError('The number of samples could not be determined. '
|
||||
'Please make sure that if you are using a generator'
|
||||
'to call this method directly with n_samples kwarg '
|
||||
'passed.')
|
||||
batch_size = self._validate_or_infer_batch_size(None, steps_per_epoch,
|
||||
generator)
|
||||
if batch_size is None:
|
||||
batch_size = 32
|
||||
with self.optimizer(noise_distribution,
|
||||
epsilon,
|
||||
self.layers,
|
||||
class_weight,
|
||||
data_size,
|
||||
batch_size) as _:
|
||||
out = super(BoltOnModel, self).fit_generator(
|
||||
generator,
|
||||
class_weight=class_weight,
|
||||
steps_per_epoch=steps_per_epoch,
|
||||
**kwargs)
|
||||
return out
|
||||
|
||||
def calculate_class_weights(self,
|
||||
class_weights=None,
|
||||
class_counts=None,
|
||||
num_classes=None):
|
||||
"""Calculates class weighting to be used in training.
|
||||
|
||||
Args:
|
||||
class_weights: str specifying type, array giving weights, or None.
|
||||
class_counts: If class_weights is not None, then an array of
|
||||
the number of samples for each class
|
||||
num_classes: If class_weights is not None, then the number of
|
||||
classes.
|
||||
Returns:
|
||||
class_weights as 1D tensor, to be passed to model's fit method.
|
||||
"""
|
||||
# Value checking
|
||||
class_keys = ['balanced']
|
||||
is_string = False
|
||||
if isinstance(class_weights, str):
|
||||
is_string = True
|
||||
if class_weights not in class_keys:
|
||||
raise ValueError('Detected string class_weights with '
|
||||
'value: {0}, which is not one of {1}.'
|
||||
'Please select a valid class_weight type'
|
||||
'or pass an array'.format(class_weights,
|
||||
class_keys))
|
||||
if class_counts is None:
|
||||
raise ValueError('Class counts must be provided if using '
|
||||
'class_weights=%s' % class_weights)
|
||||
class_counts_shape = tf.Variable(class_counts,
|
||||
trainable=False,
|
||||
dtype=self._dtype).shape
|
||||
if len(class_counts_shape) != 1:
|
||||
raise ValueError('class counts must be a 1D array.'
|
||||
'Detected: {0}'.format(class_counts_shape))
|
||||
if num_classes is None:
|
||||
raise ValueError('num_classes must be provided if using '
|
||||
'class_weights=%s' % class_weights)
|
||||
elif class_weights is not None:
|
||||
if num_classes is None:
|
||||
raise ValueError('You must pass a value for num_classes if '
|
||||
'creating an array of class_weights')
|
||||
# performing class weight calculation
|
||||
if class_weights is None:
|
||||
class_weights = 1
|
||||
elif is_string and class_weights == 'balanced':
|
||||
num_samples = sum(class_counts)
|
||||
weighted_counts = tf.dtypes.cast(tf.math.multiply(num_classes,
|
||||
class_counts),
|
||||
self._dtype)
|
||||
class_weights = tf.Variable(num_samples, dtype=self._dtype) / \
|
||||
tf.Variable(weighted_counts, dtype=self._dtype)
|
||||
else:
|
||||
class_weights = _ops.convert_to_tensor_v2(class_weights)
|
||||
if len(class_weights.shape) != 1:
|
||||
raise ValueError('Detected class_weights shape: {0} instead of '
|
||||
'1D array'.format(class_weights.shape))
|
||||
if class_weights.shape[0] != num_classes:
|
||||
raise ValueError(
|
||||
'Detected array length: {0} instead of: {1}'.format(
|
||||
class_weights.shape[0],
|
||||
num_classes))
|
||||
return class_weights
|
548
tensorflow_privacy/privacy/bolt_on/models_test.py
Normal file
548
tensorflow_privacy/privacy/bolt_on/models_test.py
Normal file
|
@ -0,0 +1,548 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Unit testing for models."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.framework import ops as _ops
|
||||
from tensorflow.python.keras import keras_parameterized
|
||||
from tensorflow.python.keras import losses
|
||||
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from tensorflow_privacy.privacy.bolt_on import models
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexMixin
|
||||
from tensorflow_privacy.privacy.bolt_on.optimizers import BoltOn
|
||||
|
||||
|
||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||
"""Test loss function for testing BoltOn model."""
|
||||
|
||||
def __init__(self, reg_lambda, c_arg, radius_constant, name='test'):
|
||||
super(TestLoss, self).__init__(name=name)
|
||||
self.reg_lambda = reg_lambda
|
||||
self.C = c_arg # pylint: disable=invalid-name
|
||||
self.radius_constant = radius_constant
|
||||
|
||||
def radius(self):
|
||||
"""Radius, R, of the hypothesis space W.
|
||||
|
||||
W is a convex set that forms the hypothesis space.
|
||||
|
||||
Returns:
|
||||
radius
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def gamma(self):
|
||||
"""Returns strongly convex parameter, gamma."""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def beta(self, class_weight): # pylint: disable=unused-argument
|
||||
"""Smoothness, beta.
|
||||
|
||||
Args:
|
||||
class_weight: the class weights as scalar or 1d tensor, where its
|
||||
dimensionality is equal to the number of outputs.
|
||||
|
||||
Returns:
|
||||
Beta
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def lipchitz_constant(self, class_weight): # pylint: disable=unused-argument
|
||||
"""Lipchitz constant, L.
|
||||
|
||||
Args:
|
||||
class_weight: class weights used
|
||||
|
||||
Returns:
|
||||
L
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(
|
||||
tf.math.squared_difference(y_true, y_pred),
|
||||
axis=1
|
||||
)
|
||||
|
||||
def max_class_weight(self, class_weight):
|
||||
"""the maximum weighting in class weights (max value) as a scalar tensor.
|
||||
|
||||
Args:
|
||||
class_weight: class weights used
|
||||
|
||||
Returns:
|
||||
maximum class weighting as tensor scalar
|
||||
"""
|
||||
if class_weight is None:
|
||||
return 1
|
||||
raise ValueError('')
|
||||
|
||||
def kernel_regularizer(self):
|
||||
"""Returns the kernel_regularizer to be used.
|
||||
|
||||
Any subclass should override this method if they want a kernel_regularizer
|
||||
(if required for the loss function to be StronglyConvex.
|
||||
"""
|
||||
return L1L2(l2=self.reg_lambda)
|
||||
|
||||
|
||||
class TestOptimizer(OptimizerV2):
|
||||
"""Test optimizer used for testing BoltOn model."""
|
||||
|
||||
def __init__(self):
|
||||
super(TestOptimizer, self).__init__('test')
|
||||
|
||||
def compute_gradients(self):
|
||||
return 0
|
||||
|
||||
def get_config(self):
|
||||
return {}
|
||||
|
||||
def _create_slots(self, var):
|
||||
pass
|
||||
|
||||
def _resource_apply_dense(self, grad, handle):
|
||||
return grad
|
||||
|
||||
def _resource_apply_sparse(self, grad, handle, indices):
|
||||
return grad
|
||||
|
||||
|
||||
class InitTests(keras_parameterized.TestCase):
|
||||
"""Tests for keras model initialization."""
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal',
|
||||
'n_outputs': 1,
|
||||
},
|
||||
{'testcase_name': 'many outputs',
|
||||
'n_outputs': 100,
|
||||
},
|
||||
])
|
||||
def test_init_params(self, n_outputs):
|
||||
"""Test initialization of BoltOnModel.
|
||||
|
||||
Args:
|
||||
n_outputs: number of output neurons
|
||||
"""
|
||||
# test valid domains for each variable
|
||||
clf = models.BoltOnModel(n_outputs)
|
||||
self.assertIsInstance(clf, models.BoltOnModel)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'invalid n_outputs',
|
||||
'n_outputs': -1,
|
||||
},
|
||||
])
|
||||
def test_bad_init_params(self, n_outputs):
|
||||
"""test bad initializations of BoltOnModel that should raise errors.
|
||||
|
||||
Args:
|
||||
n_outputs: number of output neurons
|
||||
"""
|
||||
# test invalid domains for each variable, especially noise
|
||||
with self.assertRaises(ValueError):
|
||||
models.BoltOnModel(n_outputs)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'string compile',
|
||||
'n_outputs': 1,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': 'adam',
|
||||
},
|
||||
{'testcase_name': 'test compile',
|
||||
'n_outputs': 100,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': TestOptimizer(),
|
||||
},
|
||||
])
|
||||
def test_compile(self, n_outputs, loss, optimizer):
|
||||
"""Test compilation of BoltOnModel.
|
||||
|
||||
Args:
|
||||
n_outputs: number of output neurons
|
||||
loss: instantiated TestLoss instance
|
||||
optimizer: instantiated TestOptimizer instance
|
||||
"""
|
||||
# test compilation of valid tf.optimizer and tf.loss
|
||||
with self.cached_session():
|
||||
clf = models.BoltOnModel(n_outputs)
|
||||
clf.compile(optimizer, loss)
|
||||
self.assertEqual(clf.loss, loss)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'Not strong loss',
|
||||
'n_outputs': 1,
|
||||
'loss': losses.BinaryCrossentropy(),
|
||||
'optimizer': 'adam',
|
||||
},
|
||||
{'testcase_name': 'Not valid optimizer',
|
||||
'n_outputs': 1,
|
||||
'loss': TestLoss(1, 1, 1),
|
||||
'optimizer': 'ada',
|
||||
}
|
||||
])
|
||||
def test_bad_compile(self, n_outputs, loss, optimizer):
|
||||
"""test bad compilations of BoltOnModel that should raise errors.
|
||||
|
||||
Args:
|
||||
n_outputs: number of output neurons
|
||||
loss: instantiated TestLoss instance
|
||||
optimizer: instantiated TestOptimizer instance
|
||||
"""
|
||||
# test compilaton of invalid tf.optimizer and non instantiated loss.
|
||||
with self.cached_session():
|
||||
with self.assertRaises((ValueError, AttributeError)):
|
||||
clf = models.BoltOnModel(n_outputs)
|
||||
clf.compile(optimizer, loss)
|
||||
|
||||
|
||||
def _cat_dataset(n_samples, input_dim, n_classes, batch_size, generator=False):
|
||||
"""Creates a categorically encoded dataset.
|
||||
|
||||
Creates a categorically encoded dataset (y is categorical).
|
||||
returns the specified dataset either as a static array or as a generator.
|
||||
Will have evenly split samples across each output class.
|
||||
Each output class will be a different point in the input space.
|
||||
|
||||
Args:
|
||||
n_samples: number of rows
|
||||
input_dim: input dimensionality
|
||||
n_classes: output dimensionality
|
||||
batch_size: The desired batch_size
|
||||
generator: False for array, True for generator
|
||||
|
||||
Returns:
|
||||
X as (n_samples, input_dim), Y as (n_samples, n_outputs)
|
||||
"""
|
||||
x_stack = []
|
||||
y_stack = []
|
||||
for i_class in range(n_classes):
|
||||
x_stack.append(
|
||||
tf.constant(1*i_class, tf.float32, (n_samples, input_dim))
|
||||
)
|
||||
y_stack.append(
|
||||
tf.constant(i_class, tf.float32, (n_samples, n_classes))
|
||||
)
|
||||
x_set, y_set = tf.stack(x_stack), tf.stack(y_stack)
|
||||
if generator:
|
||||
dataset = tf.data.Dataset.from_tensor_slices(
|
||||
(x_set, y_set)
|
||||
)
|
||||
dataset = dataset.batch(batch_size=batch_size)
|
||||
return dataset
|
||||
return x_set, y_set
|
||||
|
||||
|
||||
def _do_fit(n_samples,
|
||||
input_dim,
|
||||
n_outputs,
|
||||
epsilon,
|
||||
generator,
|
||||
batch_size,
|
||||
reset_n_samples,
|
||||
optimizer,
|
||||
loss,
|
||||
distribution='laplace'):
|
||||
"""Instantiate necessary components for fitting and perform a model fit.
|
||||
|
||||
Args:
|
||||
n_samples: number of samples in dataset
|
||||
input_dim: the sample dimensionality
|
||||
n_outputs: number of output neurons
|
||||
epsilon: privacy parameter
|
||||
generator: True to create a generator, False to use an iterator
|
||||
batch_size: batch_size to use
|
||||
reset_n_samples: True to set _samples to None prior to fitting.
|
||||
False does nothing
|
||||
optimizer: instance of TestOptimizer
|
||||
loss: instance of TestLoss
|
||||
distribution: distribution to get noise from.
|
||||
|
||||
Returns:
|
||||
BoltOnModel instsance
|
||||
"""
|
||||
clf = models.BoltOnModel(n_outputs)
|
||||
clf.compile(optimizer, loss)
|
||||
if generator:
|
||||
x = _cat_dataset(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_outputs,
|
||||
batch_size,
|
||||
generator=generator
|
||||
)
|
||||
y = None
|
||||
# x = x.batch(batch_size)
|
||||
x = x.shuffle(n_samples//2)
|
||||
batch_size = None
|
||||
if reset_n_samples:
|
||||
n_samples = None
|
||||
clf.fit_generator(x,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
else:
|
||||
x, y = _cat_dataset(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_outputs,
|
||||
batch_size,
|
||||
generator=generator)
|
||||
if reset_n_samples:
|
||||
n_samples = None
|
||||
clf.fit(x,
|
||||
y,
|
||||
batch_size=batch_size,
|
||||
n_samples=n_samples,
|
||||
noise_distribution=distribution,
|
||||
epsilon=epsilon)
|
||||
return clf
|
||||
|
||||
|
||||
class FitTests(keras_parameterized.TestCase):
|
||||
"""Test cases for keras model fitting."""
|
||||
|
||||
# @test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'iterator fit',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
},
|
||||
{'testcase_name': 'iterator fit no samples',
|
||||
'generator': False,
|
||||
'reset_n_samples': True,
|
||||
},
|
||||
{'testcase_name': 'generator fit',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
},
|
||||
{'testcase_name': 'with callbacks',
|
||||
'generator': True,
|
||||
'reset_n_samples': False,
|
||||
},
|
||||
])
|
||||
def test_fit(self, generator, reset_n_samples):
|
||||
"""Tests fitting of BoltOnModel.
|
||||
|
||||
Args:
|
||||
generator: True for generator test, False for iterator test.
|
||||
reset_n_samples: True to reset the n_samples to None, False does nothing
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
optimizer = BoltOn(TestOptimizer(), loss)
|
||||
n_classes = 2
|
||||
input_dim = 5
|
||||
epsilon = 1
|
||||
batch_size = 1
|
||||
n_samples = 10
|
||||
clf = _do_fit(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
epsilon,
|
||||
generator,
|
||||
batch_size,
|
||||
reset_n_samples,
|
||||
optimizer,
|
||||
loss,
|
||||
)
|
||||
self.assertEqual(hasattr(clf, 'layers'), True)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'generator fit',
|
||||
'generator': True,
|
||||
},
|
||||
])
|
||||
def test_fit_gen(self, generator):
|
||||
"""Tests the fit_generator method of BoltOnModel.
|
||||
|
||||
Args:
|
||||
generator: True to test with a generator dataset
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
optimizer = TestOptimizer()
|
||||
n_classes = 2
|
||||
input_dim = 5
|
||||
batch_size = 1
|
||||
n_samples = 10
|
||||
clf = models.BoltOnModel(n_classes)
|
||||
clf.compile(optimizer, loss)
|
||||
x = _cat_dataset(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
batch_size,
|
||||
generator=generator
|
||||
)
|
||||
x = x.batch(batch_size)
|
||||
x = x.shuffle(n_samples // 2)
|
||||
clf.fit_generator(x, n_samples=n_samples)
|
||||
self.assertEqual(hasattr(clf, 'layers'), True)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'iterator no n_samples',
|
||||
'generator': True,
|
||||
'reset_n_samples': True,
|
||||
'distribution': 'laplace'
|
||||
},
|
||||
{'testcase_name': 'invalid distribution',
|
||||
'generator': True,
|
||||
'reset_n_samples': True,
|
||||
'distribution': 'not_valid'
|
||||
},
|
||||
])
|
||||
def test_bad_fit(self, generator, reset_n_samples, distribution):
|
||||
"""Tests fitting with invalid parameters, which should raise an error.
|
||||
|
||||
Args:
|
||||
generator: True to test with generator, False is iterator
|
||||
reset_n_samples: True to reset the n_samples param to None prior to
|
||||
passing it to fit
|
||||
distribution: distribution to get noise from.
|
||||
"""
|
||||
with self.assertRaises(ValueError):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
optimizer = TestOptimizer()
|
||||
n_classes = 2
|
||||
input_dim = 5
|
||||
epsilon = 1
|
||||
batch_size = 1
|
||||
n_samples = 10
|
||||
_do_fit(
|
||||
n_samples,
|
||||
input_dim,
|
||||
n_classes,
|
||||
epsilon,
|
||||
generator,
|
||||
batch_size,
|
||||
reset_n_samples,
|
||||
optimizer,
|
||||
loss,
|
||||
distribution
|
||||
)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'None class_weights',
|
||||
'class_weights': None,
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'result': 1},
|
||||
{'testcase_name': 'class weights array',
|
||||
'class_weights': [1, 1],
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]},
|
||||
{'testcase_name': 'class weights balanced',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1, 1],
|
||||
'num_classes': 2,
|
||||
'result': [1, 1]},
|
||||
])
|
||||
def test_class_calculate(self,
|
||||
class_weights,
|
||||
class_counts,
|
||||
num_classes,
|
||||
result):
|
||||
"""Tests the BOltonModel calculate_class_weights method.
|
||||
|
||||
Args:
|
||||
class_weights: the class_weights to use
|
||||
class_counts: count of number of samples for each class
|
||||
num_classes: number of outputs neurons
|
||||
result: expected result
|
||||
"""
|
||||
clf = models.BoltOnModel(1, 1)
|
||||
expected = clf.calculate_class_weights(class_weights,
|
||||
class_counts,
|
||||
num_classes)
|
||||
|
||||
if hasattr(expected, 'numpy'):
|
||||
expected = expected.numpy()
|
||||
self.assertAllEqual(
|
||||
expected,
|
||||
result
|
||||
)
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'class weight not valid str',
|
||||
'class_weights': 'not_valid',
|
||||
'class_counts': 1,
|
||||
'num_classes': 1,
|
||||
'err_msg': 'Detected string class_weights with value: not_valid'},
|
||||
{'testcase_name': 'no class counts',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': None,
|
||||
'num_classes': 1,
|
||||
'err_msg': 'Class counts must be provided if '
|
||||
'using class_weights=balanced'},
|
||||
{'testcase_name': 'no num classes',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': [1],
|
||||
'num_classes': None,
|
||||
'err_msg': 'num_classes must be provided if '
|
||||
'using class_weights=balanced'},
|
||||
{'testcase_name': 'class counts not array',
|
||||
'class_weights': 'balanced',
|
||||
'class_counts': 1,
|
||||
'num_classes': None,
|
||||
'err_msg': 'class counts must be a 1D array.'},
|
||||
{'testcase_name': 'class counts array, no num classes',
|
||||
'class_weights': [1],
|
||||
'class_counts': None,
|
||||
'num_classes': None,
|
||||
'err_msg': 'You must pass a value for num_classes if '
|
||||
'creating an array of class_weights'},
|
||||
{'testcase_name': 'class counts array, improper shape',
|
||||
'class_weights': [[1], [1]],
|
||||
'class_counts': None,
|
||||
'num_classes': 2,
|
||||
'err_msg': 'Detected class_weights shape'},
|
||||
{'testcase_name': 'class counts array, wrong number classes',
|
||||
'class_weights': [1, 1, 1],
|
||||
'class_counts': None,
|
||||
'num_classes': 2,
|
||||
'err_msg': 'Detected array length:'},
|
||||
])
|
||||
|
||||
def test_class_errors(self,
|
||||
class_weights,
|
||||
class_counts,
|
||||
num_classes,
|
||||
err_msg):
|
||||
"""Tests the BOltonModel calculate_class_weights method.
|
||||
|
||||
This test passes invalid params which should raise the expected errors.
|
||||
|
||||
Args:
|
||||
class_weights: the class_weights to use.
|
||||
class_counts: count of number of samples for each class.
|
||||
num_classes: number of outputs neurons.
|
||||
err_msg: The expected error message.
|
||||
"""
|
||||
clf = models.BoltOnModel(1, 1)
|
||||
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
||||
clf.calculate_class_weights(class_weights,
|
||||
class_counts,
|
||||
num_classes)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
388
tensorflow_privacy/privacy/bolt_on/optimizers.py
Normal file
388
tensorflow_privacy/privacy/bolt_on/optimizers.py
Normal file
|
@ -0,0 +1,388 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""BoltOn Optimizer for Bolt-on method."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
from tensorflow.python.keras.optimizer_v2 import optimizer_v2
|
||||
from tensorflow.python.ops import math_ops
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexMixin
|
||||
|
||||
_accepted_distributions = ['laplace'] # implemented distributions for noising
|
||||
|
||||
|
||||
class GammaBetaDecreasingStep(
|
||||
optimizer_v2.learning_rate_schedule.LearningRateSchedule):
|
||||
"""Computes LR as minimum of 1/beta and 1/(gamma * step) at each step.
|
||||
|
||||
This is a required step for privacy guarantees.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.is_init = False
|
||||
self.beta = None
|
||||
self.gamma = None
|
||||
|
||||
def __call__(self, step):
|
||||
"""Computes and returns the learning rate.
|
||||
|
||||
Args:
|
||||
step: the current iteration number
|
||||
|
||||
Returns:
|
||||
decayed learning rate to minimum of 1/beta and 1/(gamma * step) as per
|
||||
the BoltOn privacy requirements.
|
||||
"""
|
||||
if not self.is_init:
|
||||
raise AttributeError('Please initialize the {0} Learning Rate Scheduler.'
|
||||
'This is performed automatically by using the '
|
||||
'{1} as a context manager, '
|
||||
'as desired'.format(self.__class__.__name__,
|
||||
BoltOn.__class__.__name__
|
||||
)
|
||||
)
|
||||
dtype = self.beta.dtype
|
||||
one = tf.constant(1, dtype)
|
||||
return tf.math.minimum(tf.math.reduce_min(one/self.beta),
|
||||
one/(self.gamma*math_ops.cast(step, dtype))
|
||||
)
|
||||
|
||||
def get_config(self):
|
||||
"""Return config to setup the learning rate scheduler."""
|
||||
return {'beta': self.beta, 'gamma': self.gamma}
|
||||
|
||||
def initialize(self, beta, gamma):
|
||||
"""Setups scheduler with beta and gamma values from the loss function.
|
||||
|
||||
Meant to be used with .fit as the loss params may depend on values passed to
|
||||
fit.
|
||||
|
||||
Args:
|
||||
beta: Smoothness value. See StrongConvexMixin
|
||||
gamma: Strong Convexity parameter. See StrongConvexMixin.
|
||||
"""
|
||||
self.is_init = True
|
||||
self.beta = beta
|
||||
self.gamma = gamma
|
||||
|
||||
def de_initialize(self):
|
||||
"""De initialize post fit, as another fit call may use other parameters."""
|
||||
self.is_init = False
|
||||
self.beta = None
|
||||
self.gamma = None
|
||||
|
||||
|
||||
class BoltOn(optimizer_v2.OptimizerV2):
|
||||
"""Wrap another tf optimizer with BoltOn privacy protocol.
|
||||
|
||||
BoltOn optimizer wraps another tf optimizer to be used
|
||||
as the visible optimizer to the tf model. No matter the optimizer
|
||||
passed, "BoltOn" enables the bolt-on model to control the learning rate
|
||||
based on the strongly convex loss.
|
||||
|
||||
To use the BoltOn method, you must:
|
||||
1. instantiate it with an instantiated tf optimizer and StrongConvexLoss.
|
||||
2. use it as a context manager around your .fit method internals.
|
||||
|
||||
This can be accomplished by the following:
|
||||
optimizer = tf.optimizers.SGD()
|
||||
loss = privacy.bolt_on.losses.StrongConvexBinaryCrossentropy()
|
||||
bolton = BoltOn(optimizer, loss)
|
||||
with bolton(*args) as _:
|
||||
model.fit()
|
||||
The args required for the context manager can be found in the __call__
|
||||
method.
|
||||
|
||||
For more details on the strong convexity requirements, see:
|
||||
Bolt-on Differential Privacy for Scalable Stochastic Gradient
|
||||
Descent-based Analytics by Xi Wu et. al.
|
||||
"""
|
||||
|
||||
def __init__(self, # pylint: disable=super-init-not-called
|
||||
optimizer,
|
||||
loss,
|
||||
dtype=tf.float32,
|
||||
):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
optimizer: Optimizer_v2 or subclass to be used as the optimizer
|
||||
(wrapped).
|
||||
loss: StrongConvexLoss function that the model is being compiled with.
|
||||
dtype: dtype
|
||||
"""
|
||||
|
||||
if not isinstance(loss, StrongConvexMixin):
|
||||
raise ValueError('loss function must be a Strongly Convex and therefore '
|
||||
'extend the StrongConvexMixin.')
|
||||
self._private_attributes = [
|
||||
'_internal_optimizer',
|
||||
'dtype',
|
||||
'noise_distribution',
|
||||
'epsilon',
|
||||
'loss',
|
||||
'class_weights',
|
||||
'input_dim',
|
||||
'n_samples',
|
||||
'layers',
|
||||
'batch_size',
|
||||
'_is_init',
|
||||
]
|
||||
self._internal_optimizer = optimizer
|
||||
self.learning_rate = GammaBetaDecreasingStep() # use the BoltOn Learning
|
||||
# rate scheduler, as required for privacy guarantees. This will still need
|
||||
# to get values from the loss function near the time that .fit is called
|
||||
# on the model (when this optimizer will be called as a context manager)
|
||||
self.dtype = dtype
|
||||
self.loss = loss
|
||||
self._is_init = False
|
||||
|
||||
def get_config(self):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
return self._internal_optimizer.get_config()
|
||||
|
||||
def project_weights_to_r(self, force=False):
|
||||
"""Normalize the weights to the R-ball.
|
||||
|
||||
Args:
|
||||
force: True to normalize regardless of previous weight values.
|
||||
False to check if weights > R-ball and only normalize then.
|
||||
|
||||
Raises:
|
||||
Exception: If not called from inside this optimizer context.
|
||||
"""
|
||||
if not self._is_init:
|
||||
raise Exception('This method must be called from within the optimizer\'s '
|
||||
'context.')
|
||||
radius = self.loss.radius()
|
||||
for layer in self.layers:
|
||||
weight_norm = tf.norm(layer.kernel, axis=0)
|
||||
if force:
|
||||
layer.kernel = layer.kernel / (weight_norm / radius)
|
||||
else:
|
||||
layer.kernel = tf.cond(
|
||||
tf.reduce_sum(tf.cast(weight_norm > radius, dtype=self.dtype)) > 0,
|
||||
lambda k=layer.kernel, w=weight_norm, r=radius: k / (w / r), # pylint: disable=cell-var-from-loop
|
||||
lambda k=layer.kernel: k # pylint: disable=cell-var-from-loop
|
||||
)
|
||||
|
||||
def get_noise(self, input_dim, output_dim):
|
||||
"""Sample noise to be added to weights for privacy guarantee.
|
||||
|
||||
Args:
|
||||
input_dim: the input dimensionality for the weights
|
||||
output_dim: the output dimensionality for the weights
|
||||
|
||||
Returns:
|
||||
Noise in shape of layer's weights to be added to the weights.
|
||||
|
||||
Raises:
|
||||
Exception: If not called from inside this optimizer's context.
|
||||
"""
|
||||
if not self._is_init:
|
||||
raise Exception('This method must be called from within the optimizer\'s '
|
||||
'context.')
|
||||
loss = self.loss
|
||||
distribution = self.noise_distribution.lower()
|
||||
if distribution == _accepted_distributions[0]: # laplace
|
||||
per_class_epsilon = self.epsilon / (output_dim)
|
||||
l2_sensitivity = (2 *
|
||||
loss.lipchitz_constant(self.class_weights)) / \
|
||||
(loss.gamma() * self.n_samples * self.batch_size)
|
||||
unit_vector = tf.random.normal(shape=(input_dim, output_dim),
|
||||
mean=0,
|
||||
seed=1,
|
||||
stddev=1.0,
|
||||
dtype=self.dtype)
|
||||
unit_vector = unit_vector / tf.math.sqrt(
|
||||
tf.reduce_sum(tf.math.square(unit_vector), axis=0)
|
||||
)
|
||||
|
||||
beta = l2_sensitivity / per_class_epsilon
|
||||
alpha = input_dim # input_dim
|
||||
gamma = tf.random.gamma([output_dim],
|
||||
alpha,
|
||||
beta=1 / beta,
|
||||
seed=1,
|
||||
dtype=self.dtype
|
||||
)
|
||||
return unit_vector * gamma
|
||||
raise NotImplementedError('Noise distribution: {0} is not '
|
||||
'a valid distribution'.format(distribution))
|
||||
|
||||
def from_config(self, *args, **kwargs): # pylint: disable=arguments-differ
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
return self._internal_optimizer.from_config(*args, **kwargs)
|
||||
|
||||
def __getattr__(self, name):
|
||||
"""Get attr.
|
||||
|
||||
return _internal_optimizer off self instance, and everything else
|
||||
from the _internal_optimizer instance.
|
||||
|
||||
Args:
|
||||
name: Name of attribute to get from this or aggregate optimizer.
|
||||
|
||||
Returns:
|
||||
attribute from BoltOn if specified to come from self, else
|
||||
from _internal_optimizer.
|
||||
"""
|
||||
if name == '_private_attributes' or name in self._private_attributes:
|
||||
return getattr(self, name)
|
||||
optim = object.__getattribute__(self, '_internal_optimizer')
|
||||
try:
|
||||
return object.__getattribute__(optim, name)
|
||||
except AttributeError:
|
||||
raise AttributeError(
|
||||
"Neither '{0}' nor '{1}' object has attribute '{2}'"
|
||||
"".format(self.__class__.__name__,
|
||||
self._internal_optimizer.__class__.__name__,
|
||||
name)
|
||||
)
|
||||
|
||||
def __setattr__(self, key, value):
|
||||
"""Set attribute to self instance if its the internal optimizer.
|
||||
|
||||
Reroute everything else to the _internal_optimizer.
|
||||
|
||||
Args:
|
||||
key: attribute name
|
||||
value: attribute value
|
||||
"""
|
||||
if key == '_private_attributes':
|
||||
object.__setattr__(self, key, value)
|
||||
elif key in self._private_attributes:
|
||||
object.__setattr__(self, key, value)
|
||||
else:
|
||||
setattr(self._internal_optimizer, key, value)
|
||||
|
||||
def _resource_apply_dense(self, *args, **kwargs): # pylint: disable=arguments-differ
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
return self._internal_optimizer._resource_apply_dense(*args, **kwargs) # pylint: disable=protected-access
|
||||
|
||||
def _resource_apply_sparse(self, *args, **kwargs): # pylint: disable=arguments-differ
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
return self._internal_optimizer._resource_apply_sparse(*args, **kwargs) # pylint: disable=protected-access
|
||||
|
||||
def get_updates(self, loss, params):
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
out = self._internal_optimizer.get_updates(loss, params)
|
||||
self.project_weights_to_r()
|
||||
return out
|
||||
|
||||
def apply_gradients(self, *args, **kwargs): # pylint: disable=arguments-differ
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
out = self._internal_optimizer.apply_gradients(*args, **kwargs)
|
||||
self.project_weights_to_r()
|
||||
return out
|
||||
|
||||
def minimize(self, *args, **kwargs): # pylint: disable=arguments-differ
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
out = self._internal_optimizer.minimize(*args, **kwargs)
|
||||
self.project_weights_to_r()
|
||||
return out
|
||||
|
||||
def _compute_gradients(self, *args, **kwargs): # pylint: disable=arguments-differ,protected-access
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
return self._internal_optimizer._compute_gradients(*args, **kwargs) # pylint: disable=protected-access
|
||||
|
||||
def get_gradients(self, *args, **kwargs): # pylint: disable=arguments-differ
|
||||
"""Reroutes to _internal_optimizer. See super/_internal_optimizer."""
|
||||
return self._internal_optimizer.get_gradients(*args, **kwargs)
|
||||
|
||||
def __enter__(self):
|
||||
"""Context manager call at the beginning of with statement.
|
||||
|
||||
Returns:
|
||||
self, to be used in context manager
|
||||
"""
|
||||
self._is_init = True
|
||||
return self
|
||||
|
||||
def __call__(self,
|
||||
noise_distribution,
|
||||
epsilon,
|
||||
layers,
|
||||
class_weights,
|
||||
n_samples,
|
||||
batch_size):
|
||||
"""Accepts required values for bolton method from context entry point.
|
||||
|
||||
Stores them on the optimizer for use throughout fitting.
|
||||
|
||||
Args:
|
||||
noise_distribution: the noise distribution to pick.
|
||||
see _accepted_distributions and get_noise for possible values.
|
||||
epsilon: privacy parameter. Lower gives more privacy but less utility.
|
||||
layers: list of Keras/Tensorflow layers. Can be found as model.layers
|
||||
class_weights: class_weights used, which may either be a scalar or 1D
|
||||
tensor with dim == n_classes.
|
||||
n_samples: number of rows/individual samples in the training set
|
||||
batch_size: batch size used.
|
||||
|
||||
Returns:
|
||||
self, to be used by the __enter__ method for context.
|
||||
"""
|
||||
if epsilon <= 0:
|
||||
raise ValueError('Detected epsilon: {0}. '
|
||||
'Valid range is 0 < epsilon <inf'.format(epsilon))
|
||||
if noise_distribution not in _accepted_distributions:
|
||||
raise ValueError('Detected noise distribution: {0} not one of: {1} valid'
|
||||
'distributions'.format(noise_distribution,
|
||||
_accepted_distributions))
|
||||
self.noise_distribution = noise_distribution
|
||||
self.learning_rate.initialize(self.loss.beta(class_weights),
|
||||
self.loss.gamma())
|
||||
self.epsilon = tf.constant(epsilon, dtype=self.dtype)
|
||||
self.class_weights = tf.constant(class_weights, dtype=self.dtype)
|
||||
self.n_samples = tf.constant(n_samples, dtype=self.dtype)
|
||||
self.layers = layers
|
||||
self.batch_size = tf.constant(batch_size, dtype=self.dtype)
|
||||
return self
|
||||
|
||||
def __exit__(self, *args):
|
||||
"""Exit call from with statement.
|
||||
|
||||
Used to:
|
||||
1.reset the model and fit parameters passed to the optimizer
|
||||
to enable the BoltOn Privacy guarantees. These are reset to ensure
|
||||
that any future calls to fit with the same instance of the optimizer
|
||||
will properly error out.
|
||||
|
||||
2.call post-fit methods normalizing/projecting the model weights and
|
||||
adding noise to the weights.
|
||||
|
||||
Args:
|
||||
*args: encompasses the type, value, and traceback values which are unused.
|
||||
"""
|
||||
self.project_weights_to_r(True)
|
||||
for layer in self.layers:
|
||||
input_dim = layer.kernel.shape[0]
|
||||
output_dim = layer.units
|
||||
noise = self.get_noise(input_dim,
|
||||
output_dim,
|
||||
)
|
||||
layer.kernel = tf.math.add(layer.kernel, noise)
|
||||
self.noise_distribution = None
|
||||
self.learning_rate.de_initialize()
|
||||
self.epsilon = -1
|
||||
self.batch_size = -1
|
||||
self.class_weights = None
|
||||
self.n_samples = None
|
||||
self.input_dim = None
|
||||
self.layers = None
|
||||
self._is_init = False
|
579
tensorflow_privacy/privacy/bolt_on/optimizers_test.py
Normal file
579
tensorflow_privacy/privacy/bolt_on/optimizers_test.py
Normal file
|
@ -0,0 +1,579 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Unit testing for optimizers."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
from absl.testing import parameterized
|
||||
import tensorflow as tf
|
||||
from tensorflow.python import ops as _ops
|
||||
from tensorflow.python.framework import test_util
|
||||
from tensorflow.python.keras import keras_parameterized
|
||||
from tensorflow.python.keras import losses
|
||||
from tensorflow.python.keras.initializers import constant
|
||||
from tensorflow.python.keras.models import Model
|
||||
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
|
||||
from tensorflow.python.keras.regularizers import L1L2
|
||||
from tensorflow.python.platform import test
|
||||
from tensorflow_privacy.privacy.bolt_on import optimizers as opt
|
||||
from tensorflow_privacy.privacy.bolt_on.losses import StrongConvexMixin
|
||||
|
||||
|
||||
class TestModel(Model): # pylint: disable=abstract-method
|
||||
"""BoltOn episilon-delta model.
|
||||
|
||||
Uses 4 key steps to achieve privacy guarantees:
|
||||
1. Adds noise to weights after training (output perturbation).
|
||||
2. Projects weights to R after each batch
|
||||
3. Limits learning rate
|
||||
4. Use a strongly convex loss function (see compile)
|
||||
|
||||
For more details on the strong convexity requirements, see:
|
||||
Bolt-on Differential Privacy for Scalable Stochastic Gradient
|
||||
Descent-based Analytics by Xi Wu et. al.
|
||||
"""
|
||||
|
||||
def __init__(self, n_outputs=2, input_shape=(16,), init_value=2):
|
||||
"""Constructor.
|
||||
|
||||
Args:
|
||||
n_outputs: number of output neurons
|
||||
input_shape:
|
||||
init_value:
|
||||
"""
|
||||
super(TestModel, self).__init__(name='bolton', dynamic=False)
|
||||
self.n_outputs = n_outputs
|
||||
self.layer_input_shape = input_shape
|
||||
self.output_layer = tf.keras.layers.Dense(
|
||||
self.n_outputs,
|
||||
input_shape=self.layer_input_shape,
|
||||
kernel_regularizer=L1L2(l2=1),
|
||||
kernel_initializer=constant(init_value),
|
||||
)
|
||||
|
||||
|
||||
class TestLoss(losses.Loss, StrongConvexMixin):
|
||||
"""Test loss function for testing BoltOn model."""
|
||||
|
||||
def __init__(self, reg_lambda, c_arg, radius_constant, name='test'):
|
||||
super(TestLoss, self).__init__(name=name)
|
||||
self.reg_lambda = reg_lambda
|
||||
self.C = c_arg # pylint: disable=invalid-name
|
||||
self.radius_constant = radius_constant
|
||||
|
||||
def radius(self):
|
||||
"""Radius, R, of the hypothesis space W.
|
||||
|
||||
W is a convex set that forms the hypothesis space.
|
||||
|
||||
Returns:
|
||||
a tensor
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(self.radius_constant, dtype=tf.float32)
|
||||
|
||||
def gamma(self):
|
||||
"""Returns strongly convex parameter, gamma."""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def beta(self, class_weight): # pylint: disable=unused-argument
|
||||
"""Smoothness, beta.
|
||||
|
||||
Args:
|
||||
class_weight: the class weights as scalar or 1d tensor, where its
|
||||
dimensionality is equal to the number of outputs.
|
||||
|
||||
Returns:
|
||||
Beta
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def lipchitz_constant(self, class_weight): # pylint: disable=unused-argument
|
||||
"""Lipchitz constant, L.
|
||||
|
||||
Args:
|
||||
class_weight: class weights used
|
||||
|
||||
Returns:
|
||||
constant L
|
||||
"""
|
||||
return _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
|
||||
def call(self, y_true, y_pred):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(
|
||||
tf.math.squared_difference(y_true, y_pred),
|
||||
axis=1
|
||||
)
|
||||
|
||||
def max_class_weight(self, class_weight, dtype=tf.float32):
|
||||
"""the maximum weighting in class weights (max value) as a scalar tensor.
|
||||
|
||||
Args:
|
||||
class_weight: class weights used
|
||||
dtype: the data type for tensor conversions.
|
||||
|
||||
Returns:
|
||||
maximum class weighting as tensor scalar
|
||||
"""
|
||||
if class_weight is None:
|
||||
return 1
|
||||
raise NotImplementedError('')
|
||||
|
||||
def kernel_regularizer(self):
|
||||
"""Returns the kernel_regularizer to be used.
|
||||
|
||||
Any subclass should override this method if they want a kernel_regularizer
|
||||
(if required for the loss function to be StronglyConvex.
|
||||
"""
|
||||
return L1L2(l2=self.reg_lambda)
|
||||
|
||||
|
||||
class TestOptimizer(OptimizerV2):
|
||||
"""Optimizer used for testing the BoltOn optimizer."""
|
||||
|
||||
def __init__(self):
|
||||
super(TestOptimizer, self).__init__('test')
|
||||
self.not_private = 'test'
|
||||
self.iterations = tf.constant(1, dtype=tf.float32)
|
||||
self._iterations = tf.constant(1, dtype=tf.float32)
|
||||
|
||||
def _compute_gradients(self, loss, var_list, grad_loss=None):
|
||||
return 'test'
|
||||
|
||||
def get_config(self):
|
||||
return 'test'
|
||||
|
||||
def from_config(self, config, custom_objects=None):
|
||||
return 'test'
|
||||
|
||||
def _create_slots(self):
|
||||
return 'test'
|
||||
|
||||
def _resource_apply_dense(self, grad, handle):
|
||||
return 'test'
|
||||
|
||||
def _resource_apply_sparse(self, grad, handle, indices):
|
||||
return 'test'
|
||||
|
||||
def get_updates(self, loss, params):
|
||||
return 'test'
|
||||
|
||||
def apply_gradients(self, grads_and_vars, name=None):
|
||||
return 'test'
|
||||
|
||||
def minimize(self, loss, var_list, grad_loss=None, name=None):
|
||||
return 'test'
|
||||
|
||||
def get_gradients(self, loss, params):
|
||||
return 'test'
|
||||
|
||||
def limit_learning_rate(self):
|
||||
return 'test'
|
||||
|
||||
|
||||
class BoltonOptimizerTest(keras_parameterized.TestCase):
|
||||
"""BoltOn Optimizer tests."""
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'getattr',
|
||||
'fn': '__getattr__',
|
||||
'args': ['dtype'],
|
||||
'result': tf.float32,
|
||||
'test_attr': None},
|
||||
{'testcase_name': 'project_weights_to_r',
|
||||
'fn': 'project_weights_to_r',
|
||||
'args': ['dtype'],
|
||||
'result': None,
|
||||
'test_attr': ''},
|
||||
])
|
||||
|
||||
def test_fn(self, fn, args, result, test_attr):
|
||||
"""test that a fn of BoltOn optimizer is working as expected.
|
||||
|
||||
Args:
|
||||
fn: method of Optimizer to test
|
||||
args: args to optimizer fn
|
||||
result: the expected result
|
||||
test_attr: None if the fn returns the test result. Otherwise, this is
|
||||
the attribute of BoltOn to check against result with.
|
||||
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
model = TestModel(1)
|
||||
model.layers[0].kernel = \
|
||||
model.layers[0].kernel_initializer((model.layer_input_shape[0],
|
||||
model.n_outputs))
|
||||
bolton._is_init = True # pylint: disable=protected-access
|
||||
bolton.layers = model.layers
|
||||
bolton.epsilon = 2
|
||||
bolton.noise_distribution = 'laplace'
|
||||
bolton.n_outputs = 1
|
||||
bolton.n_samples = 1
|
||||
res = getattr(bolton, fn, None)(*args)
|
||||
if test_attr is not None:
|
||||
res = getattr(bolton, test_attr, None)
|
||||
if hasattr(res, 'numpy') and hasattr(result, 'numpy'): # both tensors/not
|
||||
res = res.numpy()
|
||||
result = result.numpy()
|
||||
self.assertEqual(res, result)
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': '1 value project to r=1',
|
||||
'r': 1,
|
||||
'init_value': 2,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[1]]},
|
||||
{'testcase_name': '2 value project to r=1',
|
||||
'r': 1,
|
||||
'init_value': 2,
|
||||
'shape': (2,),
|
||||
'n_out': 1,
|
||||
'result': [[0.707107], [0.707107]]},
|
||||
{'testcase_name': '1 value project to r=2',
|
||||
'r': 2,
|
||||
'init_value': 3,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[2]]},
|
||||
{'testcase_name': 'no project',
|
||||
'r': 2,
|
||||
'init_value': 1,
|
||||
'shape': (1,),
|
||||
'n_out': 1,
|
||||
'result': [[1]]},
|
||||
])
|
||||
def test_project(self, r, shape, n_out, init_value, result):
|
||||
"""test that a fn of BoltOn optimizer is working as expected.
|
||||
|
||||
Args:
|
||||
r: Radius value for StrongConvex loss function.
|
||||
shape: input_dimensionality
|
||||
n_out: output dimensionality
|
||||
init_value: the initial value for 'constant' kernel initializer
|
||||
result: the expected output after projection.
|
||||
"""
|
||||
tf.random.set_seed(1)
|
||||
def project_fn(r):
|
||||
loss = TestLoss(1, 1, r)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
model = TestModel(n_out, shape, init_value)
|
||||
model.compile(bolton, loss)
|
||||
model.layers[0].kernel = \
|
||||
model.layers[0].kernel_initializer((model.layer_input_shape[0],
|
||||
model.n_outputs))
|
||||
bolton._is_init = True # pylint: disable=protected-access
|
||||
bolton.layers = model.layers
|
||||
bolton.epsilon = 2
|
||||
bolton.noise_distribution = 'laplace'
|
||||
bolton.n_outputs = 1
|
||||
bolton.n_samples = 1
|
||||
bolton.project_weights_to_r()
|
||||
return _ops.convert_to_tensor_v2(bolton.layers[0].kernel, tf.float32)
|
||||
res = project_fn(r)
|
||||
self.assertAllClose(res, result)
|
||||
|
||||
@test_util.run_all_in_graph_and_eager_modes
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'normal values',
|
||||
'epsilon': 2,
|
||||
'noise': 'laplace',
|
||||
'class_weights': 1},
|
||||
])
|
||||
def test_context_manager(self, noise, epsilon, class_weights):
|
||||
"""Tests the context manager functionality of the optimizer.
|
||||
|
||||
Args:
|
||||
noise: noise distribution to pick
|
||||
epsilon: epsilon privacy parameter to use
|
||||
class_weights: class_weights to use
|
||||
"""
|
||||
@tf.function
|
||||
def test_run():
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
model = TestModel(1, (1,), 1)
|
||||
model.compile(bolton, loss)
|
||||
model.layers[0].kernel = \
|
||||
model.layers[0].kernel_initializer((model.layer_input_shape[0],
|
||||
model.n_outputs))
|
||||
with bolton(noise, epsilon, model.layers, class_weights, 1, 1) as _:
|
||||
pass
|
||||
return _ops.convert_to_tensor_v2(bolton.epsilon, dtype=tf.float32)
|
||||
epsilon = test_run()
|
||||
self.assertEqual(epsilon.numpy(), -1)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'invalid noise',
|
||||
'epsilon': 1,
|
||||
'noise': 'not_valid',
|
||||
'err_msg': 'Detected noise distribution: not_valid not one of:'},
|
||||
{'testcase_name': 'invalid epsilon',
|
||||
'epsilon': -1,
|
||||
'noise': 'laplace',
|
||||
'err_msg': 'Detected epsilon: -1. Valid range is 0 < epsilon <inf'},
|
||||
])
|
||||
def test_context_domains(self, noise, epsilon, err_msg):
|
||||
"""Tests the context domains.
|
||||
|
||||
Args:
|
||||
noise: noise distribution to pick
|
||||
epsilon: epsilon privacy parameter to use
|
||||
err_msg: the expected error message
|
||||
|
||||
"""
|
||||
|
||||
@tf.function
|
||||
def test_run(noise, epsilon):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
model = TestModel(1, (1,), 1)
|
||||
model.compile(bolton, loss)
|
||||
model.layers[0].kernel = \
|
||||
model.layers[0].kernel_initializer((model.layer_input_shape[0],
|
||||
model.n_outputs))
|
||||
with bolton(noise, epsilon, model.layers, 1, 1, 1) as _:
|
||||
pass
|
||||
with self.assertRaisesRegexp(ValueError, err_msg): # pylint: disable=deprecated-method
|
||||
test_run(noise, epsilon)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'fn: get_noise',
|
||||
'fn': 'get_noise',
|
||||
'args': [1, 1],
|
||||
'err_msg': 'This method must be called from within the '
|
||||
'optimizer\'s context'},
|
||||
])
|
||||
def test_not_in_context(self, fn, args, err_msg):
|
||||
"""Tests that the expected functions raise errors when not in context.
|
||||
|
||||
Args:
|
||||
fn: the function to test
|
||||
args: the arguments for said function
|
||||
err_msg: expected error message
|
||||
"""
|
||||
def test_run(fn, args):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
model = TestModel(1, (1,), 1)
|
||||
model.compile(bolton, loss)
|
||||
model.layers[0].kernel = \
|
||||
model.layers[0].kernel_initializer((model.layer_input_shape[0],
|
||||
model.n_outputs))
|
||||
getattr(bolton, fn)(*args)
|
||||
|
||||
with self.assertRaisesRegexp(Exception, err_msg): # pylint: disable=deprecated-method
|
||||
test_run(fn, args)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'fn: get_updates',
|
||||
'fn': 'get_updates',
|
||||
'args': [0, 0]},
|
||||
{'testcase_name': 'fn: get_config',
|
||||
'fn': 'get_config',
|
||||
'args': []},
|
||||
{'testcase_name': 'fn: from_config',
|
||||
'fn': 'from_config',
|
||||
'args': [0]},
|
||||
{'testcase_name': 'fn: _resource_apply_dense',
|
||||
'fn': '_resource_apply_dense',
|
||||
'args': [1, 1]},
|
||||
{'testcase_name': 'fn: _resource_apply_sparse',
|
||||
'fn': '_resource_apply_sparse',
|
||||
'args': [1, 1, 1]},
|
||||
{'testcase_name': 'fn: apply_gradients',
|
||||
'fn': 'apply_gradients',
|
||||
'args': [1]},
|
||||
{'testcase_name': 'fn: minimize',
|
||||
'fn': 'minimize',
|
||||
'args': [1, 1]},
|
||||
{'testcase_name': 'fn: _compute_gradients',
|
||||
'fn': '_compute_gradients',
|
||||
'args': [1, 1]},
|
||||
{'testcase_name': 'fn: get_gradients',
|
||||
'fn': 'get_gradients',
|
||||
'args': [1, 1]},
|
||||
])
|
||||
def test_rerouted_function(self, fn, args):
|
||||
"""Tests rerouted function.
|
||||
|
||||
Tests that a method of the internal optimizer is correctly routed from
|
||||
the BoltOn instance to the internal optimizer instance (TestOptimizer,
|
||||
here).
|
||||
|
||||
Args:
|
||||
fn: fn to test
|
||||
args: arguments to that fn
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
optimizer = TestOptimizer()
|
||||
bolton = opt.BoltOn(optimizer, loss)
|
||||
model = TestModel(3)
|
||||
model.compile(optimizer, loss)
|
||||
model.layers[0].kernel = \
|
||||
model.layers[0].kernel_initializer((model.layer_input_shape[0],
|
||||
model.n_outputs))
|
||||
model.layers[0].kernel = \
|
||||
model.layers[0].kernel_initializer((model.layer_input_shape[0],
|
||||
model.n_outputs))
|
||||
bolton._is_init = True # pylint: disable=protected-access
|
||||
bolton.layers = model.layers
|
||||
bolton.epsilon = 2
|
||||
bolton.noise_distribution = 'laplace'
|
||||
bolton.n_outputs = 1
|
||||
bolton.n_samples = 1
|
||||
self.assertEqual(
|
||||
getattr(bolton, fn, lambda: 'fn not found')(*args),
|
||||
'test'
|
||||
)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'fn: project_weights_to_r',
|
||||
'fn': 'project_weights_to_r',
|
||||
'args': []},
|
||||
{'testcase_name': 'fn: get_noise',
|
||||
'fn': 'get_noise',
|
||||
'args': [1, 1]},
|
||||
])
|
||||
def test_not_reroute_fn(self, fn, args):
|
||||
"""Test function is not rerouted.
|
||||
|
||||
Test that a fn that should not be rerouted to the internal optimizer is
|
||||
in fact not rerouted.
|
||||
|
||||
Args:
|
||||
fn: fn to test
|
||||
args: arguments to that fn
|
||||
"""
|
||||
def test_run(fn, args):
|
||||
loss = TestLoss(1, 1, 1)
|
||||
bolton = opt.BoltOn(TestOptimizer(), loss)
|
||||
model = TestModel(1, (1,), 1)
|
||||
model.compile(bolton, loss)
|
||||
model.layers[0].kernel = \
|
||||
model.layers[0].kernel_initializer((model.layer_input_shape[0],
|
||||
model.n_outputs))
|
||||
bolton._is_init = True # pylint: disable=protected-access
|
||||
bolton.noise_distribution = 'laplace'
|
||||
bolton.epsilon = 1
|
||||
bolton.layers = model.layers
|
||||
bolton.class_weights = 1
|
||||
bolton.n_samples = 1
|
||||
bolton.batch_size = 1
|
||||
bolton.n_outputs = 1
|
||||
res = getattr(bolton, fn, lambda: 'test')(*args)
|
||||
if res != 'test':
|
||||
res = 1
|
||||
else:
|
||||
res = 0
|
||||
return _ops.convert_to_tensor_v2(res, dtype=tf.float32)
|
||||
self.assertNotEqual(test_run(fn, args), 0)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'attr: _iterations',
|
||||
'attr': '_iterations'}
|
||||
])
|
||||
def test_reroute_attr(self, attr):
|
||||
"""Test a function is rerouted.
|
||||
|
||||
Test that attribute of internal optimizer is correctly rerouted to the
|
||||
internal optimizer.
|
||||
|
||||
Args:
|
||||
attr: attribute to test
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
internal_optimizer = TestOptimizer()
|
||||
optimizer = opt.BoltOn(internal_optimizer, loss)
|
||||
self.assertEqual(getattr(optimizer, attr),
|
||||
getattr(internal_optimizer, attr))
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'attr does not exist',
|
||||
'attr': '_not_valid'}
|
||||
])
|
||||
def test_attribute_error(self, attr):
|
||||
"""Test rerouting of attributes.
|
||||
|
||||
Test that attribute of internal optimizer is correctly rerouted to the
|
||||
internal optimizer
|
||||
|
||||
Args:
|
||||
attr: attribute to test
|
||||
"""
|
||||
loss = TestLoss(1, 1, 1)
|
||||
internal_optimizer = TestOptimizer()
|
||||
optimizer = opt.BoltOn(internal_optimizer, loss)
|
||||
with self.assertRaises(AttributeError):
|
||||
getattr(optimizer, attr)
|
||||
|
||||
|
||||
class SchedulerTest(keras_parameterized.TestCase):
|
||||
"""GammaBeta Scheduler tests."""
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'not in context',
|
||||
'err_msg': 'Please initialize the GammaBetaDecreasingStep Learning Rate'
|
||||
' Scheduler'
|
||||
}
|
||||
])
|
||||
def test_bad_call(self, err_msg):
|
||||
"""Test attribute of internal opt correctly rerouted to the internal opt.
|
||||
|
||||
Args:
|
||||
err_msg: The expected error message from the scheduler bad call.
|
||||
"""
|
||||
scheduler = opt.GammaBetaDecreasingStep()
|
||||
with self.assertRaisesRegexp(Exception, err_msg): # pylint: disable=deprecated-method
|
||||
scheduler(1)
|
||||
|
||||
@parameterized.named_parameters([
|
||||
{'testcase_name': 'step 1',
|
||||
'step': 1,
|
||||
'res': 0.5},
|
||||
{'testcase_name': 'step 2',
|
||||
'step': 2,
|
||||
'res': 0.5},
|
||||
{'testcase_name': 'step 3',
|
||||
'step': 3,
|
||||
'res': 0.333333333},
|
||||
])
|
||||
def test_call(self, step, res):
|
||||
"""Test call.
|
||||
|
||||
Test that attribute of internal optimizer is correctly rerouted to the
|
||||
internal optimizer
|
||||
|
||||
Args:
|
||||
step: step number to 'GammaBetaDecreasingStep' 'Scheduler'.
|
||||
res: expected result from call to 'GammaBetaDecreasingStep' 'Scheduler'.
|
||||
"""
|
||||
beta = _ops.convert_to_tensor_v2(2, dtype=tf.float32)
|
||||
gamma = _ops.convert_to_tensor_v2(1, dtype=tf.float32)
|
||||
scheduler = opt.GammaBetaDecreasingStep()
|
||||
scheduler.initialize(beta, gamma)
|
||||
step = _ops.convert_to_tensor_v2(step, dtype=tf.float32)
|
||||
lr = scheduler(step)
|
||||
self.assertAllClose(lr.numpy(), res)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
test.main()
|
||||
unittest.main()
|
140
tensorflow_privacy/privacy/dp_query/BUILD
Normal file
140
tensorflow_privacy/privacy/dp_query/BUILD
Normal file
|
@ -0,0 +1,140 @@
|
|||
package(default_visibility = ["//visibility:public"])
|
||||
|
||||
licenses(["notice"]) # Apache 2.0
|
||||
|
||||
py_library(
|
||||
name = "dp_query",
|
||||
srcs = ["dp_query.py"],
|
||||
deps = [
|
||||
"//third_party/py/distutils",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "gaussian_query",
|
||||
srcs = ["gaussian_query.py"],
|
||||
deps = [
|
||||
":dp_query",
|
||||
":normalized_query",
|
||||
"//third_party/py/distutils",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "gaussian_query_test",
|
||||
size = "small",
|
||||
srcs = ["gaussian_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":gaussian_query",
|
||||
":test_utils",
|
||||
"//third_party/py/absl/testing:parameterized",
|
||||
"//third_party/py/numpy",
|
||||
"//third_party/py/six",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "no_privacy_query",
|
||||
srcs = ["no_privacy_query.py"],
|
||||
deps = [
|
||||
":dp_query",
|
||||
"//third_party/py/distutils",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "no_privacy_query_test",
|
||||
size = "small",
|
||||
srcs = ["no_privacy_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":no_privacy_query",
|
||||
":test_utils",
|
||||
"//third_party/py/absl/testing:parameterized",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "normalized_query",
|
||||
srcs = ["normalized_query.py"],
|
||||
deps = [
|
||||
":dp_query",
|
||||
"//third_party/py/distutils",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "normalized_query_test",
|
||||
size = "small",
|
||||
srcs = ["normalized_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":gaussian_query",
|
||||
":normalized_query",
|
||||
":test_utils",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "nested_query",
|
||||
srcs = ["nested_query.py"],
|
||||
deps = [
|
||||
":dp_query",
|
||||
"//third_party/py/distutils",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "nested_query_test",
|
||||
size = "small",
|
||||
srcs = ["nested_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":gaussian_query",
|
||||
":nested_query",
|
||||
":test_utils",
|
||||
"//third_party/py/absl/testing:parameterized",
|
||||
"//third_party/py/distutils",
|
||||
"//third_party/py/numpy",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "quantile_adaptive_clip_sum_query",
|
||||
srcs = ["quantile_adaptive_clip_sum_query.py"],
|
||||
deps = [
|
||||
":dp_query",
|
||||
":gaussian_query",
|
||||
":normalized_query",
|
||||
"//third_party/py/tensorflow",
|
||||
],
|
||||
)
|
||||
|
||||
py_test(
|
||||
name = "quantile_adaptive_clip_sum_query_test",
|
||||
srcs = ["quantile_adaptive_clip_sum_query_test.py"],
|
||||
python_version = "PY2",
|
||||
deps = [
|
||||
":quantile_adaptive_clip_sum_query",
|
||||
":test_utils",
|
||||
"//third_party/py/numpy",
|
||||
"//third_party/py/tensorflow",
|
||||
"//third_party/py/tensorflow_privacy/privacy/analysis:privacy_ledger",
|
||||
],
|
||||
)
|
||||
|
||||
py_library(
|
||||
name = "test_utils",
|
||||
srcs = ["test_utils.py"],
|
||||
deps = [],
|
||||
)
|
0
tensorflow_privacy/privacy/dp_query/__init__.py
Normal file
0
tensorflow_privacy/privacy/dp_query/__init__.py
Normal file
225
tensorflow_privacy/privacy/dp_query/dp_query.py
Normal file
225
tensorflow_privacy/privacy/dp_query/dp_query.py
Normal file
|
@ -0,0 +1,225 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""An interface for differentially private query mechanisms.
|
||||
|
||||
The DPQuery class abstracts the differential privacy mechanism needed by DP-SGD.
|
||||
|
||||
The nomenclature is not specific to machine learning, but rather comes from
|
||||
the differential privacy literature. Therefore, instead of talking about
|
||||
examples, minibatches, and gradients, the code talks about records, samples and
|
||||
queries. For more detail, please see the paper here:
|
||||
https://arxiv.org/pdf/1812.06210.pdf
|
||||
|
||||
A common usage paradigm for this class is centralized DP-SGD training on a
|
||||
fixed set of training examples, which we call "standard DP-SGD training."
|
||||
In such training, SGD applies as usual by computing gradient updates from a set
|
||||
of training examples that form a minibatch. However, each minibatch is broken
|
||||
up into disjoint "microbatches." The gradient of each microbatch is computed
|
||||
and clipped to a maximum norm, with the "records" for all such clipped gradients
|
||||
forming a "sample" that constitutes the entire minibatch. Subsequently, that
|
||||
sample can be "queried" to get an averaged, noised gradient update that can be
|
||||
applied to model parameters.
|
||||
|
||||
In order to prevent inaccurate accounting of privacy parameters, the only
|
||||
means of inspecting the gradients and updates of SGD training is via the use
|
||||
of the below interfaces, and through the accumulation and querying of a
|
||||
"sample state" abstraction. Thus, accessing data is indirect on purpose.
|
||||
|
||||
The DPQuery class also allows the use of a global state that may change between
|
||||
samples. In the common situation where the privacy mechanism remains unchanged
|
||||
throughout the entire training process, the global state is usually None.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import abc
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import tensorflow as tf
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
class DPQuery(object):
|
||||
"""Interface for differentially private query mechanisms."""
|
||||
|
||||
__metaclass__ = abc.ABCMeta
|
||||
|
||||
def set_ledger(self, ledger):
|
||||
"""Supplies privacy ledger to which the query can record privacy events.
|
||||
|
||||
Args:
|
||||
ledger: A `PrivacyLedger`.
|
||||
"""
|
||||
del ledger
|
||||
raise TypeError(
|
||||
'DPQuery type %s does not support set_ledger.' % type(self).__name__)
|
||||
|
||||
def initial_global_state(self):
|
||||
"""Returns the initial global state for the DPQuery."""
|
||||
return ()
|
||||
|
||||
def derive_sample_params(self, global_state):
|
||||
"""Given the global state, derives parameters to use for the next sample.
|
||||
|
||||
Args:
|
||||
global_state: The current global state.
|
||||
|
||||
Returns:
|
||||
Parameters to use to process records in the next sample.
|
||||
"""
|
||||
del global_state # unused.
|
||||
return ()
|
||||
|
||||
@abc.abstractmethod
|
||||
def initial_sample_state(self, template):
|
||||
"""Returns an initial state to use for the next sample.
|
||||
|
||||
Args:
|
||||
template: A nested structure of tensors, TensorSpecs, or numpy arrays used
|
||||
as a template to create the initial sample state. It is assumed that the
|
||||
leaves of the structure are python scalars or some type that has
|
||||
properties `shape` and `dtype`.
|
||||
|
||||
Returns: An initial sample state.
|
||||
"""
|
||||
pass
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
"""Preprocesses a single record.
|
||||
|
||||
This preprocessing is applied to one client's record, e.g. selecting vectors
|
||||
and clipping them to a fixed L2 norm. This method can be executed in a
|
||||
separate TF session, or even on a different machine, so it should not depend
|
||||
on any TF inputs other than those provided as input arguments. In
|
||||
particular, implementations should avoid accessing any TF tensors or
|
||||
variables that are stored in self.
|
||||
|
||||
Args:
|
||||
params: The parameters for the sample. In standard DP-SGD training,
|
||||
the clipping norm for the sample's microbatch gradients (i.e.,
|
||||
a maximum norm magnitude to which each gradient is clipped)
|
||||
record: The record to be processed. In standard DP-SGD training,
|
||||
the gradient computed for the examples in one microbatch, which
|
||||
may be the gradient for just one example (for size 1 microbatches).
|
||||
|
||||
Returns:
|
||||
A structure of tensors to be aggregated.
|
||||
"""
|
||||
del params # unused.
|
||||
return record
|
||||
|
||||
@abc.abstractmethod
|
||||
def accumulate_preprocessed_record(
|
||||
self, sample_state, preprocessed_record):
|
||||
"""Accumulates a single preprocessed record into the sample state.
|
||||
|
||||
This method is intended to only do simple aggregation, typically just a sum.
|
||||
In the future, we might remove this method and replace it with a way to
|
||||
declaratively specify the type of aggregation required.
|
||||
|
||||
Args:
|
||||
sample_state: The current sample state. In standard DP-SGD training,
|
||||
the accumulated sum of previous clipped microbatch gradients.
|
||||
preprocessed_record: The preprocessed record to accumulate.
|
||||
|
||||
Returns:
|
||||
The updated sample state.
|
||||
"""
|
||||
pass
|
||||
|
||||
def accumulate_record(self, params, sample_state, record):
|
||||
"""Accumulates a single record into the sample state.
|
||||
|
||||
This is a helper method that simply delegates to `preprocess_record` and
|
||||
`accumulate_preprocessed_record` for the common case when both of those
|
||||
functions run on a single device.
|
||||
|
||||
Args:
|
||||
params: The parameters for the sample. In standard DP-SGD training,
|
||||
the clipping norm for the sample's microbatch gradients (i.e.,
|
||||
a maximum norm magnitude to which each gradient is clipped)
|
||||
sample_state: The current sample state. In standard DP-SGD training,
|
||||
the accumulated sum of previous clipped microbatch gradients.
|
||||
record: The record to accumulate. In standard DP-SGD training,
|
||||
the gradient computed for the examples in one microbatch, which
|
||||
may be the gradient for just one example (for size 1 microbatches).
|
||||
|
||||
Returns:
|
||||
The updated sample state. In standard DP-SGD training, the set of
|
||||
previous mcrobatch gradients with the addition of the record argument.
|
||||
"""
|
||||
preprocessed_record = self.preprocess_record(params, record)
|
||||
return self.accumulate_preprocessed_record(
|
||||
sample_state, preprocessed_record)
|
||||
|
||||
@abc.abstractmethod
|
||||
def merge_sample_states(self, sample_state_1, sample_state_2):
|
||||
"""Merges two sample states into a single state.
|
||||
|
||||
Args:
|
||||
sample_state_1: The first sample state to merge.
|
||||
sample_state_2: The second sample state to merge.
|
||||
|
||||
Returns:
|
||||
The merged sample state.
|
||||
"""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def get_noised_result(self, sample_state, global_state):
|
||||
"""Gets query result after all records of sample have been accumulated.
|
||||
|
||||
Args:
|
||||
sample_state: The sample state after all records have been accumulated.
|
||||
In standard DP-SGD training, the accumulated sum of clipped microbatch
|
||||
gradients (in the special case of microbatches of size 1, the clipped
|
||||
per-example gradients).
|
||||
global_state: The global state, storing long-term privacy bookkeeping.
|
||||
|
||||
Returns:
|
||||
A tuple (result, new_global_state) where "result" is the result of the
|
||||
query and "new_global_state" is the updated global state. In standard
|
||||
DP-SGD training, the result is a gradient update comprising a noised
|
||||
average of the clipped gradients in the sample state---with the noise and
|
||||
averaging performed in a manner that guarantees differential privacy.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
def zeros_like(arg):
|
||||
"""A `zeros_like` function that also works for `tf.TensorSpec`s."""
|
||||
try:
|
||||
arg = tf.convert_to_tensor(arg)
|
||||
except TypeError:
|
||||
pass
|
||||
return tf.zeros(arg.shape, arg.dtype)
|
||||
|
||||
|
||||
class SumAggregationDPQuery(DPQuery):
|
||||
"""Base class for DPQueries that aggregate via sum."""
|
||||
|
||||
def initial_sample_state(self, template):
|
||||
return nest.map_structure(zeros_like, template)
|
||||
|
||||
def accumulate_preprocessed_record(self, sample_state, preprocessed_record):
|
||||
return nest.map_structure(tf.add, sample_state, preprocessed_record)
|
||||
|
||||
def merge_sample_states(self, sample_state_1, sample_state_2):
|
||||
return nest.map_structure(tf.add, sample_state_1, sample_state_2)
|
145
tensorflow_privacy/privacy/dp_query/gaussian_query.py
Normal file
145
tensorflow_privacy/privacy/dp_query/gaussian_query.py
Normal file
|
@ -0,0 +1,145 @@
|
|||
# Copyright 2018, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Implements DPQuery interface for Gaussian average queries.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||
from tensorflow_privacy.privacy.dp_query import normalized_query
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
class GaussianSumQuery(dp_query.SumAggregationDPQuery):
|
||||
"""Implements DPQuery interface for Gaussian sum queries.
|
||||
|
||||
Accumulates clipped vectors, then adds Gaussian noise to the sum.
|
||||
"""
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
_GlobalState = collections.namedtuple(
|
||||
'_GlobalState', ['l2_norm_clip', 'stddev'])
|
||||
|
||||
def __init__(self, l2_norm_clip, stddev):
|
||||
"""Initializes the GaussianSumQuery.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: The clipping norm to apply to the global norm of each
|
||||
record.
|
||||
stddev: The stddev of the noise added to the sum.
|
||||
"""
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
self._stddev = stddev
|
||||
self._ledger = None
|
||||
|
||||
def set_ledger(self, ledger):
|
||||
self._ledger = ledger
|
||||
|
||||
def make_global_state(self, l2_norm_clip, stddev):
|
||||
"""Creates a global state from the given parameters."""
|
||||
return self._GlobalState(tf.cast(l2_norm_clip, tf.float32),
|
||||
tf.cast(stddev, tf.float32))
|
||||
|
||||
def initial_global_state(self):
|
||||
return self.make_global_state(self._l2_norm_clip, self._stddev)
|
||||
|
||||
def derive_sample_params(self, global_state):
|
||||
return global_state.l2_norm_clip
|
||||
|
||||
def initial_sample_state(self, template):
|
||||
return nest.map_structure(
|
||||
dp_query.zeros_like, template)
|
||||
|
||||
def preprocess_record_impl(self, params, record):
|
||||
"""Clips the l2 norm, returning the clipped record and the l2 norm.
|
||||
|
||||
Args:
|
||||
params: The parameters for the sample.
|
||||
record: The record to be processed.
|
||||
|
||||
Returns:
|
||||
A tuple (preprocessed_records, l2_norm) where `preprocessed_records` is
|
||||
the structure of preprocessed tensors, and l2_norm is the total l2 norm
|
||||
before clipping.
|
||||
"""
|
||||
l2_norm_clip = params
|
||||
record_as_list = nest.flatten(record)
|
||||
clipped_as_list, norm = tf.clip_by_global_norm(record_as_list, l2_norm_clip)
|
||||
return nest.pack_sequence_as(record, clipped_as_list), norm
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
preprocessed_record, _ = self.preprocess_record_impl(params, record)
|
||||
return preprocessed_record
|
||||
|
||||
def get_noised_result(self, sample_state, global_state):
|
||||
"""See base class."""
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
def add_noise(v):
|
||||
return v + tf.random_normal(tf.shape(v), stddev=global_state.stddev)
|
||||
else:
|
||||
random_normal = tf.random_normal_initializer(stddev=global_state.stddev)
|
||||
def add_noise(v):
|
||||
return v + random_normal(tf.shape(v))
|
||||
|
||||
if self._ledger:
|
||||
dependencies = [
|
||||
self._ledger.record_sum_query(
|
||||
global_state.l2_norm_clip, global_state.stddev)
|
||||
]
|
||||
else:
|
||||
dependencies = []
|
||||
with tf.control_dependencies(dependencies):
|
||||
return nest.map_structure(add_noise, sample_state), global_state
|
||||
|
||||
|
||||
class GaussianAverageQuery(normalized_query.NormalizedQuery):
|
||||
"""Implements DPQuery interface for Gaussian average queries.
|
||||
|
||||
Accumulates clipped vectors, adds Gaussian noise, and normalizes.
|
||||
|
||||
Note that we use "fixed-denominator" estimation: the denominator should be
|
||||
specified as the expected number of records per sample. Accumulating the
|
||||
denominator separately would also be possible but would be produce a higher
|
||||
variance estimator.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
l2_norm_clip,
|
||||
sum_stddev,
|
||||
denominator):
|
||||
"""Initializes the GaussianAverageQuery.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: The clipping norm to apply to the global norm of each
|
||||
record.
|
||||
sum_stddev: The stddev of the noise added to the sum (before
|
||||
normalization).
|
||||
denominator: The normalization constant (applied after noise is added to
|
||||
the sum).
|
||||
"""
|
||||
super(GaussianAverageQuery, self).__init__(
|
||||
numerator_query=GaussianSumQuery(l2_norm_clip, sum_stddev),
|
||||
denominator=denominator)
|
161
tensorflow_privacy/privacy/dp_query/gaussian_query_test.py
Normal file
161
tensorflow_privacy/privacy/dp_query/gaussian_query_test.py
Normal file
|
@ -0,0 +1,161 @@
|
|||
# Copyright 2018, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for GaussianAverageQuery."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
from six.moves import xrange
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.dp_query import test_utils
|
||||
|
||||
|
||||
class GaussianQueryTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def test_gaussian_sum_no_clip_no_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
record1 = tf.constant([2.0, 0.0])
|
||||
record2 = tf.constant([-1.0, 1.0])
|
||||
|
||||
query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=10.0, stddev=0.0)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_gaussian_sum_with_clip_no_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
|
||||
record2 = tf.constant([4.0, -3.0]) # Not clipped.
|
||||
|
||||
query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=5.0, stddev=0.0)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_gaussian_sum_with_changing_clip_no_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
|
||||
record2 = tf.constant([4.0, -3.0]) # Not clipped.
|
||||
|
||||
l2_norm_clip = tf.Variable(5.0)
|
||||
l2_norm_clip_placeholder = tf.placeholder(tf.float32)
|
||||
assign_l2_norm_clip = tf.assign(l2_norm_clip, l2_norm_clip_placeholder)
|
||||
query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=l2_norm_clip, stddev=0.0)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
result = sess.run(query_result)
|
||||
expected = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
sess.run(assign_l2_norm_clip, {l2_norm_clip_placeholder: 0.0})
|
||||
result = sess.run(query_result)
|
||||
expected = [0.0, 0.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_gaussian_sum_with_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
record1, record2 = 2.71828, 3.14159
|
||||
stddev = 1.0
|
||||
|
||||
query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=5.0, stddev=stddev)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
|
||||
noised_sums = []
|
||||
for _ in xrange(1000):
|
||||
noised_sums.append(sess.run(query_result))
|
||||
|
||||
result_stddev = np.std(noised_sums)
|
||||
self.assertNear(result_stddev, stddev, 0.1)
|
||||
|
||||
def test_gaussian_sum_merge(self):
|
||||
records1 = [tf.constant([2.0, 0.0]), tf.constant([-1.0, 1.0])]
|
||||
records2 = [tf.constant([3.0, 5.0]), tf.constant([-1.0, 4.0])]
|
||||
|
||||
def get_sample_state(records):
|
||||
query = gaussian_query.GaussianSumQuery(l2_norm_clip=10.0, stddev=1.0)
|
||||
global_state = query.initial_global_state()
|
||||
params = query.derive_sample_params(global_state)
|
||||
sample_state = query.initial_sample_state(records[0])
|
||||
for record in records:
|
||||
sample_state = query.accumulate_record(params, sample_state, record)
|
||||
return sample_state
|
||||
|
||||
sample_state_1 = get_sample_state(records1)
|
||||
sample_state_2 = get_sample_state(records2)
|
||||
|
||||
merged = gaussian_query.GaussianSumQuery(10.0, 1.0).merge_sample_states(
|
||||
sample_state_1,
|
||||
sample_state_2)
|
||||
|
||||
with self.cached_session() as sess:
|
||||
result = sess.run(merged)
|
||||
|
||||
expected = [3.0, 10.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_gaussian_average_no_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
record1 = tf.constant([5.0, 0.0]) # Clipped to [3.0, 0.0].
|
||||
record2 = tf.constant([-1.0, 2.0]) # Not clipped.
|
||||
|
||||
query = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=3.0, sum_stddev=0.0, denominator=2.0)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected_average = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected_average)
|
||||
|
||||
def test_gaussian_average_with_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
record1, record2 = 2.71828, 3.14159
|
||||
sum_stddev = 1.0
|
||||
denominator = 2.0
|
||||
|
||||
query = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=5.0, sum_stddev=sum_stddev, denominator=denominator)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
|
||||
noised_averages = []
|
||||
for _ in range(1000):
|
||||
noised_averages.append(sess.run(query_result))
|
||||
|
||||
result_stddev = np.std(noised_averages)
|
||||
avg_stddev = sum_stddev / denominator
|
||||
self.assertNear(result_stddev, avg_stddev, 0.1)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('type_mismatch', [1.0], (1.0,), TypeError),
|
||||
('too_few_on_left', [1.0], [1.0, 1.0], ValueError),
|
||||
('too_few_on_right', [1.0, 1.0], [1.0], ValueError))
|
||||
def test_incompatible_records(self, record1, record2, error_type):
|
||||
query = gaussian_query.GaussianSumQuery(1.0, 0.0)
|
||||
with self.assertRaises(error_type):
|
||||
test_utils.run_query(query, [record1, record2])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
116
tensorflow_privacy/privacy/dp_query/nested_query.py
Normal file
116
tensorflow_privacy/privacy/dp_query/nested_query.py
Normal file
|
@ -0,0 +1,116 @@
|
|||
# Copyright 2018, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Implements DPQuery interface for queries over nested structures.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
class NestedQuery(dp_query.DPQuery):
|
||||
"""Implements DPQuery interface for structured queries.
|
||||
|
||||
NestedQuery evaluates arbitrary nested structures of queries. Records must be
|
||||
nested structures of tensors that are compatible (in type and arity) with the
|
||||
query structure, but are allowed to have deeper structure within each leaf of
|
||||
the query structure. For example, the nested query [q1, q2] is compatible with
|
||||
the record [t1, t2] or [t1, (t2, t3)], but not with (t1, t2), [t1] or
|
||||
[t1, t2, t3]. The entire substructure of each record corresponding to a leaf
|
||||
node of the query structure is routed to the corresponding query. If the same
|
||||
tensor should be consumed by multiple sub-queries, it can be replicated in the
|
||||
record, for example [t1, t1].
|
||||
|
||||
NestedQuery is intended to allow privacy mechanisms for groups as described in
|
||||
[McMahan & Andrew, 2018: "A General Approach to Adding Differential Privacy to
|
||||
Iterative Training Procedures" (https://arxiv.org/abs/1812.06210)].
|
||||
"""
|
||||
|
||||
def __init__(self, queries):
|
||||
"""Initializes the NestedQuery.
|
||||
|
||||
Args:
|
||||
queries: A nested structure of queries.
|
||||
"""
|
||||
self._queries = queries
|
||||
|
||||
def _map_to_queries(self, fn, *inputs, **kwargs):
|
||||
def caller(query, *args):
|
||||
return getattr(query, fn)(*args, **kwargs)
|
||||
return nest.map_structure_up_to(
|
||||
self._queries, caller, self._queries, *inputs)
|
||||
|
||||
def set_ledger(self, ledger):
|
||||
self._map_to_queries('set_ledger', ledger=ledger)
|
||||
|
||||
def initial_global_state(self):
|
||||
"""See base class."""
|
||||
return self._map_to_queries('initial_global_state')
|
||||
|
||||
def derive_sample_params(self, global_state):
|
||||
"""See base class."""
|
||||
return self._map_to_queries('derive_sample_params', global_state)
|
||||
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
return self._map_to_queries('initial_sample_state', template)
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
"""See base class."""
|
||||
return self._map_to_queries('preprocess_record', params, record)
|
||||
|
||||
def accumulate_preprocessed_record(
|
||||
self, sample_state, preprocessed_record):
|
||||
"""See base class."""
|
||||
return self._map_to_queries(
|
||||
'accumulate_preprocessed_record',
|
||||
sample_state,
|
||||
preprocessed_record)
|
||||
|
||||
def merge_sample_states(self, sample_state_1, sample_state_2):
|
||||
return self._map_to_queries(
|
||||
'merge_sample_states', sample_state_1, sample_state_2)
|
||||
|
||||
def get_noised_result(self, sample_state, global_state):
|
||||
"""Gets query result after all records of sample have been accumulated.
|
||||
|
||||
Args:
|
||||
sample_state: The sample state after all records have been accumulated.
|
||||
global_state: The global state.
|
||||
|
||||
Returns:
|
||||
A tuple (result, new_global_state) where "result" is a structure matching
|
||||
the query structure containing the results of the subqueries and
|
||||
"new_global_state" is a structure containing the updated global states
|
||||
for the subqueries.
|
||||
"""
|
||||
estimates_and_new_global_states = self._map_to_queries(
|
||||
'get_noised_result', sample_state, global_state)
|
||||
|
||||
flat_estimates, flat_new_global_states = zip(
|
||||
*nest.flatten_up_to(self._queries, estimates_and_new_global_states))
|
||||
return (
|
||||
nest.pack_sequence_as(self._queries, flat_estimates),
|
||||
nest.pack_sequence_as(self._queries, flat_new_global_states))
|
148
tensorflow_privacy/privacy/dp_query/nested_query_test.py
Normal file
148
tensorflow_privacy/privacy/dp_query/nested_query_test.py
Normal file
|
@ -0,0 +1,148 @@
|
|||
# Copyright 2018, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for NestedQuery."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
from absl.testing import parameterized
|
||||
from distutils.version import LooseVersion
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.dp_query import nested_query
|
||||
from tensorflow_privacy.privacy.dp_query import test_utils
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
_basic_query = gaussian_query.GaussianSumQuery(1.0, 0.0)
|
||||
|
||||
|
||||
class NestedQueryTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def test_nested_gaussian_sum_no_clip_no_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
query1 = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=10.0, stddev=0.0)
|
||||
query2 = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=10.0, stddev=0.0)
|
||||
|
||||
query = nested_query.NestedQuery([query1, query2])
|
||||
|
||||
record1 = [1.0, [2.0, 3.0]]
|
||||
record2 = [4.0, [3.0, 2.0]]
|
||||
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [5.0, [5.0, 5.0]]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_nested_gaussian_average_no_clip_no_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
query1 = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=10.0, sum_stddev=0.0, denominator=5.0)
|
||||
query2 = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=10.0, sum_stddev=0.0, denominator=5.0)
|
||||
|
||||
query = nested_query.NestedQuery([query1, query2])
|
||||
|
||||
record1 = [1.0, [2.0, 3.0]]
|
||||
record2 = [4.0, [3.0, 2.0]]
|
||||
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [1.0, [1.0, 1.0]]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_nested_gaussian_average_with_clip_no_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
query1 = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=4.0, sum_stddev=0.0, denominator=5.0)
|
||||
query2 = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=5.0, sum_stddev=0.0, denominator=5.0)
|
||||
|
||||
query = nested_query.NestedQuery([query1, query2])
|
||||
|
||||
record1 = [1.0, [12.0, 9.0]] # Clipped to [1.0, [4.0, 3.0]]
|
||||
record2 = [5.0, [1.0, 2.0]] # Clipped to [4.0, [1.0, 2.0]]
|
||||
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [1.0, [1.0, 1.0]]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_complex_nested_query(self):
|
||||
with self.cached_session() as sess:
|
||||
query_ab = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=1.0, stddev=0.0)
|
||||
query_c = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=10.0, sum_stddev=0.0, denominator=2.0)
|
||||
query_d = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=10.0, stddev=0.0)
|
||||
|
||||
query = nested_query.NestedQuery(
|
||||
[query_ab, {'c': query_c, 'd': [query_d]}])
|
||||
|
||||
record1 = [{'a': 0.0, 'b': 2.71828}, {'c': (-4.0, 6.0), 'd': [-4.0]}]
|
||||
record2 = [{'a': 3.14159, 'b': 0.0}, {'c': (6.0, -4.0), 'd': [5.0]}]
|
||||
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [{'a': 1.0, 'b': 1.0}, {'c': (1.0, 1.0), 'd': [1.0]}]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_nested_query_with_noise(self):
|
||||
with self.cached_session() as sess:
|
||||
sum_stddev = 2.71828
|
||||
denominator = 3.14159
|
||||
|
||||
query1 = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=1.5, stddev=sum_stddev)
|
||||
query2 = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=0.5, sum_stddev=sum_stddev, denominator=denominator)
|
||||
query = nested_query.NestedQuery((query1, query2))
|
||||
|
||||
record1 = (3.0, [2.0, 1.5])
|
||||
record2 = (0.0, [-1.0, -3.5])
|
||||
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
|
||||
noised_averages = []
|
||||
for _ in range(1000):
|
||||
noised_averages.append(nest.flatten(sess.run(query_result)))
|
||||
|
||||
result_stddev = np.std(noised_averages, 0)
|
||||
avg_stddev = sum_stddev / denominator
|
||||
expected_stddev = [sum_stddev, avg_stddev, avg_stddev]
|
||||
self.assertArrayNear(result_stddev, expected_stddev, 0.1)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('type_mismatch', [_basic_query], (1.0,), TypeError),
|
||||
('too_many_queries', [_basic_query, _basic_query], [1.0], ValueError),
|
||||
('query_too_deep', [_basic_query, [_basic_query]], [1.0, 1.0], TypeError))
|
||||
def test_record_incompatible_with_query(
|
||||
self, queries, record, error_type):
|
||||
with self.assertRaises(error_type):
|
||||
test_utils.run_query(nested_query.NestedQuery(queries), [record])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
70
tensorflow_privacy/privacy/dp_query/no_privacy_query.py
Normal file
70
tensorflow_privacy/privacy/dp_query/no_privacy_query.py
Normal file
|
@ -0,0 +1,70 @@
|
|||
# Copyright 2018, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Implements DPQuery interface for no privacy average queries."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
class NoPrivacySumQuery(dp_query.SumAggregationDPQuery):
|
||||
"""Implements DPQuery interface for a sum query with no privacy.
|
||||
|
||||
Accumulates vectors without clipping or adding noise.
|
||||
"""
|
||||
|
||||
def get_noised_result(self, sample_state, global_state):
|
||||
"""See base class."""
|
||||
return sample_state, global_state
|
||||
|
||||
|
||||
class NoPrivacyAverageQuery(dp_query.SumAggregationDPQuery):
|
||||
"""Implements DPQuery interface for an average query with no privacy.
|
||||
|
||||
Accumulates vectors and normalizes by the total number of accumulated vectors.
|
||||
"""
|
||||
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
return (super(NoPrivacyAverageQuery, self).initial_sample_state(template),
|
||||
tf.constant(0.0))
|
||||
|
||||
def preprocess_record(self, params, record, weight=1):
|
||||
"""Multiplies record by weight."""
|
||||
weighted_record = nest.map_structure(lambda t: weight * t, record)
|
||||
return (weighted_record, tf.cast(weight, tf.float32))
|
||||
|
||||
def accumulate_record(self, params, sample_state, record, weight=1):
|
||||
"""Accumulates record, multiplying by weight."""
|
||||
weighted_record = nest.map_structure(lambda t: weight * t, record)
|
||||
return self.accumulate_preprocessed_record(
|
||||
sample_state, (weighted_record, tf.cast(weight, tf.float32)))
|
||||
|
||||
def get_noised_result(self, sample_state, global_state):
|
||||
"""See base class."""
|
||||
sum_state, denominator = sample_state
|
||||
|
||||
return (
|
||||
nest.map_structure(lambda t: t / denominator, sum_state),
|
||||
global_state)
|
77
tensorflow_privacy/privacy/dp_query/no_privacy_query_test.py
Normal file
77
tensorflow_privacy/privacy/dp_query/no_privacy_query_test.py
Normal file
|
@ -0,0 +1,77 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for NoPrivacyAverageQuery."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import no_privacy_query
|
||||
from tensorflow_privacy.privacy.dp_query import test_utils
|
||||
|
||||
|
||||
class NoPrivacyQueryTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def test_sum(self):
|
||||
with self.cached_session() as sess:
|
||||
record1 = tf.constant([2.0, 0.0])
|
||||
record2 = tf.constant([-1.0, 1.0])
|
||||
|
||||
query = no_privacy_query.NoPrivacySumQuery()
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_no_privacy_average(self):
|
||||
with self.cached_session() as sess:
|
||||
record1 = tf.constant([5.0, 0.0])
|
||||
record2 = tf.constant([-1.0, 2.0])
|
||||
|
||||
query = no_privacy_query.NoPrivacyAverageQuery()
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [2.0, 1.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_no_privacy_weighted_average(self):
|
||||
with self.cached_session() as sess:
|
||||
record1 = tf.constant([4.0, 0.0])
|
||||
record2 = tf.constant([-1.0, 1.0])
|
||||
|
||||
weights = [1, 3]
|
||||
|
||||
query = no_privacy_query.NoPrivacyAverageQuery()
|
||||
query_result, _ = test_utils.run_query(
|
||||
query, [record1, record2], weights=weights)
|
||||
result = sess.run(query_result)
|
||||
expected = [0.25, 0.75]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('type_mismatch', [1.0], (1.0,), TypeError),
|
||||
('too_few_on_left', [1.0], [1.0, 1.0], ValueError),
|
||||
('too_few_on_right', [1.0, 1.0], [1.0], ValueError))
|
||||
def test_incompatible_records(self, record1, record2, error_type):
|
||||
query = no_privacy_query.NoPrivacySumQuery()
|
||||
with self.assertRaises(error_type):
|
||||
test_utils.run_query(query, [record1, record2])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
97
tensorflow_privacy/privacy/dp_query/normalized_query.py
Normal file
97
tensorflow_privacy/privacy/dp_query/normalized_query.py
Normal file
|
@ -0,0 +1,97 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Implements DPQuery interface for normalized queries.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
class NormalizedQuery(dp_query.DPQuery):
|
||||
"""DPQuery for queries with a DPQuery numerator and fixed denominator."""
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
_GlobalState = collections.namedtuple(
|
||||
'_GlobalState', ['numerator_state', 'denominator'])
|
||||
|
||||
def __init__(self, numerator_query, denominator):
|
||||
"""Initializer for NormalizedQuery.
|
||||
|
||||
Args:
|
||||
numerator_query: A DPQuery for the numerator.
|
||||
denominator: A value for the denominator. May be None if it will be
|
||||
supplied via the set_denominator function before get_noised_result is
|
||||
called.
|
||||
"""
|
||||
self._numerator = numerator_query
|
||||
self._denominator = denominator
|
||||
|
||||
def set_ledger(self, ledger):
|
||||
"""See base class."""
|
||||
self._numerator.set_ledger(ledger)
|
||||
|
||||
def initial_global_state(self):
|
||||
"""See base class."""
|
||||
if self._denominator is not None:
|
||||
denominator = tf.cast(self._denominator, tf.float32)
|
||||
else:
|
||||
denominator = None
|
||||
return self._GlobalState(
|
||||
self._numerator.initial_global_state(), denominator)
|
||||
|
||||
def derive_sample_params(self, global_state):
|
||||
"""See base class."""
|
||||
return self._numerator.derive_sample_params(global_state.numerator_state)
|
||||
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
# NormalizedQuery has no sample state beyond the numerator state.
|
||||
return self._numerator.initial_sample_state(template)
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
return self._numerator.preprocess_record(params, record)
|
||||
|
||||
def accumulate_preprocessed_record(
|
||||
self, sample_state, preprocessed_record):
|
||||
"""See base class."""
|
||||
return self._numerator.accumulate_preprocessed_record(
|
||||
sample_state, preprocessed_record)
|
||||
|
||||
def get_noised_result(self, sample_state, global_state):
|
||||
"""See base class."""
|
||||
noised_sum, new_sum_global_state = self._numerator.get_noised_result(
|
||||
sample_state, global_state.numerator_state)
|
||||
def normalize(v):
|
||||
return tf.truediv(v, global_state.denominator)
|
||||
|
||||
return (nest.map_structure(normalize, noised_sum),
|
||||
self._GlobalState(new_sum_global_state, global_state.denominator))
|
||||
|
||||
def merge_sample_states(self, sample_state_1, sample_state_2):
|
||||
"""See base class."""
|
||||
return self._numerator.merge_sample_states(sample_state_1, sample_state_2)
|
47
tensorflow_privacy/privacy/dp_query/normalized_query_test.py
Normal file
47
tensorflow_privacy/privacy/dp_query/normalized_query_test.py
Normal file
|
@ -0,0 +1,47 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for GaussianAverageQuery."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.dp_query import normalized_query
|
||||
from tensorflow_privacy.privacy.dp_query import test_utils
|
||||
|
||||
|
||||
class NormalizedQueryTest(tf.test.TestCase):
|
||||
|
||||
def test_normalization(self):
|
||||
with self.cached_session() as sess:
|
||||
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
|
||||
record2 = tf.constant([4.0, -3.0]) # Not clipped.
|
||||
|
||||
sum_query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip=5.0, stddev=0.0)
|
||||
query = normalized_query.NormalizedQuery(
|
||||
numerator_query=sum_query, denominator=2.0)
|
||||
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = sess.run(query_result)
|
||||
expected = [0.5, 0.5]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
|
@ -0,0 +1,288 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Implements DPQuery interface for adaptive clip queries.
|
||||
|
||||
Instead of a fixed clipping norm specified in advance, the clipping norm is
|
||||
dynamically adjusted to match a target fraction of clipped updates per sample,
|
||||
where the actual fraction of clipped updates is itself estimated in a
|
||||
differentially private manner. For details see Thakkar et al., "Differentially
|
||||
Private Learning with Adaptive Clipping" [http://arxiv.org/abs/1905.03871].
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import collections
|
||||
from distutils.version import LooseVersion
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.dp_query import dp_query
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.dp_query import normalized_query
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
class QuantileAdaptiveClipSumQuery(dp_query.DPQuery):
|
||||
"""DPQuery for sum queries with adaptive clipping.
|
||||
|
||||
Clipping norm is tuned adaptively to converge to a value such that a specified
|
||||
quantile of updates are clipped.
|
||||
"""
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
_GlobalState = collections.namedtuple(
|
||||
'_GlobalState', [
|
||||
'l2_norm_clip',
|
||||
'noise_multiplier',
|
||||
'target_unclipped_quantile',
|
||||
'learning_rate',
|
||||
'sum_state',
|
||||
'clipped_fraction_state'])
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
_SampleState = collections.namedtuple(
|
||||
'_SampleState', ['sum_state', 'clipped_fraction_state'])
|
||||
|
||||
# pylint: disable=invalid-name
|
||||
_SampleParams = collections.namedtuple(
|
||||
'_SampleParams', ['sum_params', 'clipped_fraction_params'])
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
clipped_count_stddev,
|
||||
expected_num_records):
|
||||
"""Initializes the QuantileAdaptiveClipSumQuery.
|
||||
|
||||
Args:
|
||||
initial_l2_norm_clip: The initial value of clipping norm.
|
||||
noise_multiplier: The multiplier of the l2_norm_clip to make the stddev of
|
||||
the noise added to the output of the sum query.
|
||||
target_unclipped_quantile: The desired quantile of updates which should be
|
||||
unclipped. I.e., a value of 0.8 means a value of l2_norm_clip should be
|
||||
found for which approximately 20% of updates are clipped each round.
|
||||
learning_rate: The learning rate for the clipping norm adaptation. A
|
||||
rate of r means that the clipping norm will change by a maximum of r at
|
||||
each step. This maximum is attained when |clip - target| is 1.0.
|
||||
clipped_count_stddev: The stddev of the noise added to the clipped_count.
|
||||
Since the sensitivity of the clipped count is 0.5, as a rule of thumb it
|
||||
should be about 0.5 for reasonable privacy.
|
||||
expected_num_records: The expected number of records per round, used to
|
||||
estimate the clipped count quantile.
|
||||
"""
|
||||
self._initial_l2_norm_clip = initial_l2_norm_clip
|
||||
self._noise_multiplier = noise_multiplier
|
||||
self._target_unclipped_quantile = target_unclipped_quantile
|
||||
self._learning_rate = learning_rate
|
||||
|
||||
# Initialize sum query's global state with None, to be set later.
|
||||
self._sum_query = gaussian_query.GaussianSumQuery(None, None)
|
||||
|
||||
# self._clipped_fraction_query is a DPQuery used to estimate the fraction of
|
||||
# records that are clipped. It accumulates an indicator 0/1 of whether each
|
||||
# record is clipped, and normalizes by the expected number of records. In
|
||||
# practice, we accumulate clipped counts shifted by -0.5 so they are
|
||||
# centered at zero. This makes the sensitivity of the clipped count query
|
||||
# 0.5 instead of 1.0, since the maximum that a single record could affect
|
||||
# the count is 0.5. Note that although the l2_norm_clip of the clipped
|
||||
# fraction query is 0.5, no clipping will ever actually occur because the
|
||||
# value of each record is always +/-0.5.
|
||||
self._clipped_fraction_query = gaussian_query.GaussianAverageQuery(
|
||||
l2_norm_clip=0.5,
|
||||
sum_stddev=clipped_count_stddev,
|
||||
denominator=expected_num_records)
|
||||
|
||||
def set_ledger(self, ledger):
|
||||
"""See base class."""
|
||||
self._sum_query.set_ledger(ledger)
|
||||
self._clipped_fraction_query.set_ledger(ledger)
|
||||
|
||||
def initial_global_state(self):
|
||||
"""See base class."""
|
||||
initial_l2_norm_clip = tf.cast(self._initial_l2_norm_clip, tf.float32)
|
||||
noise_multiplier = tf.cast(self._noise_multiplier, tf.float32)
|
||||
target_unclipped_quantile = tf.cast(self._target_unclipped_quantile,
|
||||
tf.float32)
|
||||
learning_rate = tf.cast(self._learning_rate, tf.float32)
|
||||
sum_stddev = initial_l2_norm_clip * noise_multiplier
|
||||
|
||||
sum_query_global_state = self._sum_query.make_global_state(
|
||||
l2_norm_clip=initial_l2_norm_clip,
|
||||
stddev=sum_stddev)
|
||||
|
||||
return self._GlobalState(
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
sum_query_global_state,
|
||||
self._clipped_fraction_query.initial_global_state())
|
||||
|
||||
def derive_sample_params(self, global_state):
|
||||
"""See base class."""
|
||||
|
||||
# Assign values to variables that inner sum query uses.
|
||||
sum_params = self._sum_query.derive_sample_params(global_state.sum_state)
|
||||
clipped_fraction_params = self._clipped_fraction_query.derive_sample_params(
|
||||
global_state.clipped_fraction_state)
|
||||
return self._SampleParams(sum_params, clipped_fraction_params)
|
||||
|
||||
def initial_sample_state(self, template):
|
||||
"""See base class."""
|
||||
sum_state = self._sum_query.initial_sample_state(template)
|
||||
clipped_fraction_state = self._clipped_fraction_query.initial_sample_state(
|
||||
tf.constant(0.0))
|
||||
return self._SampleState(sum_state, clipped_fraction_state)
|
||||
|
||||
def preprocess_record(self, params, record):
|
||||
preprocessed_sum_record, global_norm = (
|
||||
self._sum_query.preprocess_record_impl(params.sum_params, record))
|
||||
|
||||
# Note we are relying on the internals of GaussianSumQuery here. If we want
|
||||
# to open this up to other kinds of inner queries we'd have to do this in a
|
||||
# more general way.
|
||||
l2_norm_clip = params.sum_params
|
||||
|
||||
# We accumulate clipped counts shifted by 0.5 so they are centered at zero.
|
||||
# This makes the sensitivity of the clipped count query 0.5 instead of 1.0.
|
||||
was_clipped = tf.cast(global_norm >= l2_norm_clip, tf.float32) - 0.5
|
||||
|
||||
preprocessed_clipped_fraction_record = (
|
||||
self._clipped_fraction_query.preprocess_record(
|
||||
params.clipped_fraction_params, was_clipped))
|
||||
|
||||
return preprocessed_sum_record, preprocessed_clipped_fraction_record
|
||||
|
||||
def accumulate_preprocessed_record(
|
||||
self, sample_state, preprocessed_record, weight=1):
|
||||
"""See base class."""
|
||||
preprocessed_sum_record, preprocessed_clipped_fraction_record = preprocessed_record
|
||||
sum_state = self._sum_query.accumulate_preprocessed_record(
|
||||
sample_state.sum_state, preprocessed_sum_record)
|
||||
|
||||
clipped_fraction_state = self._clipped_fraction_query.accumulate_preprocessed_record(
|
||||
sample_state.clipped_fraction_state,
|
||||
preprocessed_clipped_fraction_record)
|
||||
return self._SampleState(sum_state, clipped_fraction_state)
|
||||
|
||||
def merge_sample_states(self, sample_state_1, sample_state_2):
|
||||
"""See base class."""
|
||||
return self._SampleState(
|
||||
self._sum_query.merge_sample_states(
|
||||
sample_state_1.sum_state,
|
||||
sample_state_2.sum_state),
|
||||
self._clipped_fraction_query.merge_sample_states(
|
||||
sample_state_1.clipped_fraction_state,
|
||||
sample_state_2.clipped_fraction_state))
|
||||
|
||||
def get_noised_result(self, sample_state, global_state):
|
||||
"""See base class."""
|
||||
gs = global_state
|
||||
|
||||
noised_vectors, sum_state = self._sum_query.get_noised_result(
|
||||
sample_state.sum_state, gs.sum_state)
|
||||
del sum_state # Unused. To be set explicitly later.
|
||||
|
||||
clipped_fraction_result, new_clipped_fraction_state = (
|
||||
self._clipped_fraction_query.get_noised_result(
|
||||
sample_state.clipped_fraction_state,
|
||||
gs.clipped_fraction_state))
|
||||
|
||||
# Unshift clipped percentile by 0.5. (See comment in accumulate_record.)
|
||||
clipped_quantile = clipped_fraction_result + 0.5
|
||||
unclipped_quantile = 1.0 - clipped_quantile
|
||||
|
||||
# Protect against out-of-range estimates.
|
||||
unclipped_quantile = tf.minimum(1.0, tf.maximum(0.0, unclipped_quantile))
|
||||
|
||||
# Loss function is convex, with derivative in [-1, 1], and minimized when
|
||||
# the true quantile matches the target.
|
||||
loss_grad = unclipped_quantile - global_state.target_unclipped_quantile
|
||||
|
||||
new_l2_norm_clip = gs.l2_norm_clip - global_state.learning_rate * loss_grad
|
||||
new_l2_norm_clip = tf.maximum(0.0, new_l2_norm_clip)
|
||||
|
||||
new_sum_stddev = new_l2_norm_clip * global_state.noise_multiplier
|
||||
new_sum_query_global_state = self._sum_query.make_global_state(
|
||||
l2_norm_clip=new_l2_norm_clip,
|
||||
stddev=new_sum_stddev)
|
||||
|
||||
new_global_state = global_state._replace(
|
||||
l2_norm_clip=new_l2_norm_clip,
|
||||
sum_state=new_sum_query_global_state,
|
||||
clipped_fraction_state=new_clipped_fraction_state)
|
||||
|
||||
return noised_vectors, new_global_state
|
||||
|
||||
|
||||
class QuantileAdaptiveClipAverageQuery(normalized_query.NormalizedQuery):
|
||||
"""DPQuery for average queries with adaptive clipping.
|
||||
|
||||
Clipping norm is tuned adaptively to converge to a value such that a specified
|
||||
quantile of updates are clipped.
|
||||
|
||||
Note that we use "fixed-denominator" estimation: the denominator should be
|
||||
specified as the expected number of records per sample. Accumulating the
|
||||
denominator separately would also be possible but would be produce a higher
|
||||
variance estimator.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier,
|
||||
denominator,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
clipped_count_stddev,
|
||||
expected_num_records):
|
||||
"""Initializes the AdaptiveClipAverageQuery.
|
||||
|
||||
Args:
|
||||
initial_l2_norm_clip: The initial value of clipping norm.
|
||||
noise_multiplier: The multiplier of the l2_norm_clip to make the stddev of
|
||||
the noise.
|
||||
denominator: The normalization constant (applied after noise is added to
|
||||
the sum).
|
||||
target_unclipped_quantile: The desired quantile of updates which should be
|
||||
clipped.
|
||||
learning_rate: The learning rate for the clipping norm adaptation. A
|
||||
rate of r means that the clipping norm will change by a maximum of r at
|
||||
each step. The maximum is attained when |clip - target| is 1.0.
|
||||
clipped_count_stddev: The stddev of the noise added to the clipped_count.
|
||||
Since the sensitivity of the clipped count is 0.5, as a rule of thumb it
|
||||
should be about 0.5 for reasonable privacy.
|
||||
expected_num_records: The expected number of records, used to estimate the
|
||||
clipped count quantile.
|
||||
"""
|
||||
numerator_query = QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip,
|
||||
noise_multiplier,
|
||||
target_unclipped_quantile,
|
||||
learning_rate,
|
||||
clipped_count_stddev,
|
||||
expected_num_records)
|
||||
super(QuantileAdaptiveClipAverageQuery, self).__init__(
|
||||
numerator_query=numerator_query,
|
||||
denominator=denominator)
|
|
@ -0,0 +1,296 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""Tests for QuantileAdaptiveClipSumQuery."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import privacy_ledger
|
||||
from tensorflow_privacy.privacy.dp_query import quantile_adaptive_clip_sum_query
|
||||
from tensorflow_privacy.privacy.dp_query import test_utils
|
||||
|
||||
tf.enable_eager_execution()
|
||||
|
||||
|
||||
class QuantileAdaptiveClipSumQueryTest(tf.test.TestCase):
|
||||
|
||||
def test_sum_no_clip_no_noise(self):
|
||||
record1 = tf.constant([2.0, 0.0])
|
||||
record2 = tf.constant([-1.0, 1.0])
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=10.0,
|
||||
noise_multiplier=0.0,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=0.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = query_result.numpy()
|
||||
expected = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_sum_with_clip_no_noise(self):
|
||||
record1 = tf.constant([-6.0, 8.0]) # Clipped to [-3.0, 4.0].
|
||||
record2 = tf.constant([4.0, -3.0]) # Not clipped.
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=5.0,
|
||||
noise_multiplier=0.0,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=0.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = query_result.numpy()
|
||||
expected = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected)
|
||||
|
||||
def test_sum_with_noise(self):
|
||||
record1, record2 = 2.71828, 3.14159
|
||||
stddev = 1.0
|
||||
clip = 5.0
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=clip,
|
||||
noise_multiplier=stddev / clip,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=0.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
noised_sums = []
|
||||
for _ in xrange(1000):
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
noised_sums.append(query_result.numpy())
|
||||
|
||||
result_stddev = np.std(noised_sums)
|
||||
self.assertNear(result_stddev, stddev, 0.1)
|
||||
|
||||
def test_average_no_noise(self):
|
||||
record1 = tf.constant([5.0, 0.0]) # Clipped to [3.0, 0.0].
|
||||
record2 = tf.constant([-1.0, 2.0]) # Not clipped.
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipAverageQuery(
|
||||
initial_l2_norm_clip=3.0,
|
||||
noise_multiplier=0.0,
|
||||
denominator=2.0,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=0.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
result = query_result.numpy()
|
||||
expected_average = [1.0, 1.0]
|
||||
self.assertAllClose(result, expected_average)
|
||||
|
||||
def test_average_with_noise(self):
|
||||
record1, record2 = 2.71828, 3.14159
|
||||
sum_stddev = 1.0
|
||||
denominator = 2.0
|
||||
clip = 3.0
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipAverageQuery(
|
||||
initial_l2_norm_clip=clip,
|
||||
noise_multiplier=sum_stddev / clip,
|
||||
denominator=denominator,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=0.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
noised_averages = []
|
||||
for _ in range(1000):
|
||||
query_result, _ = test_utils.run_query(query, [record1, record2])
|
||||
noised_averages.append(query_result.numpy())
|
||||
|
||||
result_stddev = np.std(noised_averages)
|
||||
avg_stddev = sum_stddev / denominator
|
||||
self.assertNear(result_stddev, avg_stddev, 0.1)
|
||||
|
||||
def test_adaptation_target_zero(self):
|
||||
record1 = tf.constant([8.5])
|
||||
record2 = tf.constant([-7.25])
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=10.0,
|
||||
noise_multiplier=0.0,
|
||||
target_unclipped_quantile=0.0,
|
||||
learning_rate=1.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
global_state = query.initial_global_state()
|
||||
|
||||
initial_clip = global_state.l2_norm_clip
|
||||
self.assertAllClose(initial_clip, 10.0)
|
||||
|
||||
# On the first two iterations, nothing is clipped, so the clip goes down
|
||||
# by 1.0 (the learning rate). When the clip reaches 8.0, one record is
|
||||
# clipped, so the clip goes down by only 0.5. After two more iterations,
|
||||
# both records are clipped, and the clip norm stays there (at 7.0).
|
||||
|
||||
expected_sums = [1.25, 1.25, 0.75, 0.25, 0.0]
|
||||
expected_clips = [9.0, 8.0, 7.5, 7.0, 7.0]
|
||||
for expected_sum, expected_clip in zip(expected_sums, expected_clips):
|
||||
actual_sum, global_state = test_utils.run_query(
|
||||
query, [record1, record2], global_state)
|
||||
|
||||
actual_clip = global_state.l2_norm_clip
|
||||
|
||||
self.assertAllClose(actual_clip.numpy(), expected_clip)
|
||||
self.assertAllClose(actual_sum.numpy(), (expected_sum,))
|
||||
|
||||
def test_adaptation_target_one(self):
|
||||
record1 = tf.constant([-1.5])
|
||||
record2 = tf.constant([2.75])
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=0.0,
|
||||
noise_multiplier=0.0,
|
||||
target_unclipped_quantile=1.0,
|
||||
learning_rate=1.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
global_state = query.initial_global_state()
|
||||
|
||||
initial_clip = global_state.l2_norm_clip
|
||||
self.assertAllClose(initial_clip, 0.0)
|
||||
|
||||
# On the first two iterations, both are clipped, so the clip goes up
|
||||
# by 1.0 (the learning rate). When the clip reaches 2.0, only one record is
|
||||
# clipped, so the clip goes up by only 0.5. After two more iterations,
|
||||
# both records are clipped, and the clip norm stays there (at 3.0).
|
||||
|
||||
expected_sums = [0.0, 0.0, 0.5, 1.0, 1.25]
|
||||
expected_clips = [1.0, 2.0, 2.5, 3.0, 3.0]
|
||||
for expected_sum, expected_clip in zip(expected_sums, expected_clips):
|
||||
actual_sum, global_state = test_utils.run_query(
|
||||
query, [record1, record2], global_state)
|
||||
|
||||
actual_clip = global_state.l2_norm_clip
|
||||
|
||||
self.assertAllClose(actual_clip.numpy(), expected_clip)
|
||||
self.assertAllClose(actual_sum.numpy(), (expected_sum,))
|
||||
|
||||
def test_adaptation_linspace(self):
|
||||
# 100 records equally spaced from 0 to 10 in 0.1 increments.
|
||||
# Test that with a decaying learning rate we converge to the correct
|
||||
# median with error at most 0.1.
|
||||
records = [tf.constant(x) for x in np.linspace(
|
||||
0.0, 10.0, num=21, dtype=np.float32)]
|
||||
|
||||
learning_rate = tf.Variable(1.0)
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=0.0,
|
||||
noise_multiplier=0.0,
|
||||
target_unclipped_quantile=0.5,
|
||||
learning_rate=learning_rate,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
global_state = query.initial_global_state()
|
||||
|
||||
for t in range(50):
|
||||
tf.assign(learning_rate, 1.0 / np.sqrt(t+1))
|
||||
_, global_state = test_utils.run_query(query, records, global_state)
|
||||
|
||||
actual_clip = global_state.l2_norm_clip
|
||||
|
||||
if t > 40:
|
||||
self.assertNear(actual_clip, 5.0, 0.25)
|
||||
|
||||
def test_adaptation_all_equal(self):
|
||||
# 100 equal records. Test that with a decaying learning rate we converge to
|
||||
# that record and bounce around it.
|
||||
records = [tf.constant(5.0)] * 20
|
||||
|
||||
learning_rate = tf.Variable(1.0)
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=0.0,
|
||||
noise_multiplier=0.0,
|
||||
target_unclipped_quantile=0.5,
|
||||
learning_rate=learning_rate,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
global_state = query.initial_global_state()
|
||||
|
||||
for t in range(50):
|
||||
tf.assign(learning_rate, 1.0 / np.sqrt(t+1))
|
||||
_, global_state = test_utils.run_query(query, records, global_state)
|
||||
|
||||
actual_clip = global_state.l2_norm_clip
|
||||
|
||||
if t > 40:
|
||||
self.assertNear(actual_clip, 5.0, 0.25)
|
||||
|
||||
def test_ledger(self):
|
||||
record1 = tf.constant([8.5])
|
||||
record2 = tf.constant([-7.25])
|
||||
|
||||
population_size = tf.Variable(0)
|
||||
selection_probability = tf.Variable(1.0)
|
||||
|
||||
query = quantile_adaptive_clip_sum_query.QuantileAdaptiveClipSumQuery(
|
||||
initial_l2_norm_clip=10.0,
|
||||
noise_multiplier=1.0,
|
||||
target_unclipped_quantile=0.0,
|
||||
learning_rate=1.0,
|
||||
clipped_count_stddev=0.0,
|
||||
expected_num_records=2.0)
|
||||
|
||||
query = privacy_ledger.QueryWithLedger(
|
||||
query, population_size, selection_probability)
|
||||
|
||||
# First sample.
|
||||
tf.assign(population_size, 10)
|
||||
tf.assign(selection_probability, 0.1)
|
||||
_, global_state = test_utils.run_query(query, [record1, record2])
|
||||
|
||||
expected_queries = [[10.0, 10.0], [0.5, 0.0]]
|
||||
formatted = query.ledger.get_formatted_ledger_eager()
|
||||
sample_1 = formatted[0]
|
||||
self.assertAllClose(sample_1.population_size, 10.0)
|
||||
self.assertAllClose(sample_1.selection_probability, 0.1)
|
||||
self.assertAllClose(sample_1.queries, expected_queries)
|
||||
|
||||
# Second sample.
|
||||
tf.assign(population_size, 20)
|
||||
tf.assign(selection_probability, 0.2)
|
||||
test_utils.run_query(query, [record1, record2], global_state)
|
||||
|
||||
formatted = query.ledger.get_formatted_ledger_eager()
|
||||
sample_1, sample_2 = formatted
|
||||
self.assertAllClose(sample_1.population_size, 10.0)
|
||||
self.assertAllClose(sample_1.selection_probability, 0.1)
|
||||
self.assertAllClose(sample_1.queries, expected_queries)
|
||||
|
||||
expected_queries_2 = [[9.0, 9.0], [0.5, 0.0]]
|
||||
self.assertAllClose(sample_2.population_size, 20.0)
|
||||
self.assertAllClose(sample_2.selection_probability, 0.2)
|
||||
self.assertAllClose(sample_2.queries, expected_queries_2)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
49
tensorflow_privacy/privacy/dp_query/test_utils.py
Normal file
49
tensorflow_privacy/privacy/dp_query/test_utils.py
Normal file
|
@ -0,0 +1,49 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Utility methods for testing private queries.
|
||||
|
||||
Utility methods for testing private queries.
|
||||
"""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
|
||||
def run_query(query, records, global_state=None, weights=None):
|
||||
"""Executes query on the given set of records as a single sample.
|
||||
|
||||
Args:
|
||||
query: A PrivateQuery to run.
|
||||
records: An iterable containing records to pass to the query.
|
||||
global_state: The current global state. If None, an initial global state is
|
||||
generated.
|
||||
weights: An optional iterable containing the weights of the records.
|
||||
|
||||
Returns:
|
||||
A tuple (result, new_global_state) where "result" is the result of the
|
||||
query and "new_global_state" is the updated global state.
|
||||
"""
|
||||
if not global_state:
|
||||
global_state = query.initial_global_state()
|
||||
params = query.derive_sample_params(global_state)
|
||||
sample_state = query.initial_sample_state(next(iter(records)))
|
||||
if weights is None:
|
||||
for record in records:
|
||||
sample_state = query.accumulate_record(params, sample_state, record)
|
||||
else:
|
||||
for weight, record in zip(weights, records):
|
||||
sample_state = query.accumulate_record(
|
||||
params, sample_state, record, weight)
|
||||
return query.get_noised_result(sample_state, global_state)
|
0
tensorflow_privacy/privacy/optimizers/__init__.py
Normal file
0
tensorflow_privacy/privacy/optimizers/__init__.py
Normal file
239
tensorflow_privacy/privacy/optimizers/dp_optimizer.py
Normal file
239
tensorflow_privacy/privacy/optimizers/dp_optimizer.py
Normal file
|
@ -0,0 +1,239 @@
|
|||
# Copyright 2018, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Differentially private optimizers for TensorFlow."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import privacy_ledger
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
else:
|
||||
nest = tf.nest
|
||||
|
||||
|
||||
def make_optimizer_class(cls):
|
||||
"""Constructs a DP optimizer class from an existing one."""
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
parent_code = tf.train.Optimizer.compute_gradients.__code__
|
||||
child_code = cls.compute_gradients.__code__
|
||||
GATE_OP = tf.train.Optimizer.GATE_OP # pylint: disable=invalid-name
|
||||
else:
|
||||
parent_code = tf.optimizers.Optimizer._compute_gradients.__code__ # pylint: disable=protected-access
|
||||
child_code = cls._compute_gradients.__code__ # pylint: disable=protected-access
|
||||
GATE_OP = None # pylint: disable=invalid-name
|
||||
if child_code is not parent_code:
|
||||
tf.logging.warning(
|
||||
'WARNING: Calling make_optimizer_class() on class %s that overrides '
|
||||
'method compute_gradients(). Check to ensure that '
|
||||
'make_optimizer_class() does not interfere with overridden version.',
|
||||
cls.__name__)
|
||||
|
||||
class DPOptimizerClass(cls):
|
||||
"""Differentially private subclass of given class cls."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dp_sum_query,
|
||||
num_microbatches=None,
|
||||
unroll_microbatches=False,
|
||||
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
|
||||
**kwargs):
|
||||
"""Initialize the DPOptimizerClass.
|
||||
|
||||
Args:
|
||||
dp_sum_query: DPQuery object, specifying differential privacy
|
||||
mechanism to use.
|
||||
num_microbatches: How many microbatches into which the minibatch is
|
||||
split. If None, will default to the size of the minibatch, and
|
||||
per-example gradients will be computed.
|
||||
unroll_microbatches: If true, processes microbatches within a Python
|
||||
loop instead of a tf.while_loop. Can be used if using a tf.while_loop
|
||||
raises an exception.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
self._dp_sum_query = dp_sum_query
|
||||
self._num_microbatches = num_microbatches
|
||||
self._global_state = self._dp_sum_query.initial_global_state()
|
||||
# TODO(b/122613513): Set unroll_microbatches=True to avoid this bug.
|
||||
# Beware: When num_microbatches is large (>100), enabling this parameter
|
||||
# may cause an OOM error.
|
||||
self._unroll_microbatches = unroll_microbatches
|
||||
|
||||
def compute_gradients(self,
|
||||
loss,
|
||||
var_list,
|
||||
gate_gradients=GATE_OP,
|
||||
aggregation_method=None,
|
||||
colocate_gradients_with_ops=False,
|
||||
grad_loss=None,
|
||||
gradient_tape=None):
|
||||
if callable(loss):
|
||||
# TF is running in Eager mode, check we received a vanilla tape.
|
||||
if not gradient_tape:
|
||||
raise ValueError('When in Eager mode, a tape needs to be passed.')
|
||||
|
||||
vector_loss = loss()
|
||||
if self._num_microbatches is None:
|
||||
self._num_microbatches = tf.shape(vector_loss)[0]
|
||||
sample_state = self._dp_sum_query.initial_sample_state(var_list)
|
||||
microbatches_losses = tf.reshape(vector_loss,
|
||||
[self._num_microbatches, -1])
|
||||
sample_params = (
|
||||
self._dp_sum_query.derive_sample_params(self._global_state))
|
||||
|
||||
def process_microbatch(i, sample_state):
|
||||
"""Process one microbatch (record) with privacy helper."""
|
||||
microbatch_loss = tf.reduce_mean(tf.gather(microbatches_losses, [i]))
|
||||
grads = gradient_tape.gradient(microbatch_loss, var_list)
|
||||
sample_state = self._dp_sum_query.accumulate_record(
|
||||
sample_params, sample_state, grads)
|
||||
return sample_state
|
||||
|
||||
for idx in range(self._num_microbatches):
|
||||
sample_state = process_microbatch(idx, sample_state)
|
||||
|
||||
grad_sums, self._global_state = (
|
||||
self._dp_sum_query.get_noised_result(
|
||||
sample_state, self._global_state))
|
||||
|
||||
def normalize(v):
|
||||
return v / tf.cast(self._num_microbatches, tf.float32)
|
||||
|
||||
final_grads = nest.map_structure(normalize, grad_sums)
|
||||
|
||||
grads_and_vars = list(zip(final_grads, var_list))
|
||||
return grads_and_vars
|
||||
|
||||
else:
|
||||
# TF is running in graph mode, check we did not receive a gradient tape.
|
||||
if gradient_tape:
|
||||
raise ValueError('When in graph mode, a tape should not be passed.')
|
||||
|
||||
# Note: it would be closer to the correct i.i.d. sampling of records if
|
||||
# we sampled each microbatch from the appropriate binomial distribution,
|
||||
# although that still wouldn't be quite correct because it would be
|
||||
# sampling from the dataset without replacement.
|
||||
if self._num_microbatches is None:
|
||||
self._num_microbatches = tf.shape(loss)[0]
|
||||
|
||||
microbatches_losses = tf.reshape(loss, [self._num_microbatches, -1])
|
||||
sample_params = (
|
||||
self._dp_sum_query.derive_sample_params(self._global_state))
|
||||
|
||||
def process_microbatch(i, sample_state):
|
||||
"""Process one microbatch (record) with privacy helper."""
|
||||
grads, _ = zip(*super(cls, self).compute_gradients(
|
||||
tf.reduce_mean(tf.gather(microbatches_losses,
|
||||
[i])), var_list, gate_gradients,
|
||||
aggregation_method, colocate_gradients_with_ops, grad_loss))
|
||||
grads_list = [
|
||||
g if g is not None else tf.zeros_like(v)
|
||||
for (g, v) in zip(list(grads), var_list)
|
||||
]
|
||||
sample_state = self._dp_sum_query.accumulate_record(
|
||||
sample_params, sample_state, grads_list)
|
||||
return sample_state
|
||||
|
||||
if var_list is None:
|
||||
var_list = (
|
||||
tf.trainable_variables() + tf.get_collection(
|
||||
tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
|
||||
|
||||
sample_state = self._dp_sum_query.initial_sample_state(var_list)
|
||||
|
||||
if self._unroll_microbatches:
|
||||
for idx in range(self._num_microbatches):
|
||||
sample_state = process_microbatch(idx, sample_state)
|
||||
else:
|
||||
# Use of while_loop here requires that sample_state be a nested
|
||||
# structure of tensors. In general, we would prefer to allow it to be
|
||||
# an arbitrary opaque type.
|
||||
cond_fn = lambda i, _: tf.less(i, self._num_microbatches)
|
||||
body_fn = lambda i, state: [tf.add(i, 1), process_microbatch(i, state)] # pylint: disable=line-too-long
|
||||
idx = tf.constant(0)
|
||||
_, sample_state = tf.while_loop(cond_fn, body_fn, [idx, sample_state])
|
||||
|
||||
grad_sums, self._global_state = (
|
||||
self._dp_sum_query.get_noised_result(
|
||||
sample_state, self._global_state))
|
||||
|
||||
def normalize(v):
|
||||
return tf.truediv(v, tf.cast(self._num_microbatches, tf.float32))
|
||||
|
||||
final_grads = nest.map_structure(normalize, grad_sums)
|
||||
|
||||
return list(zip(final_grads, var_list))
|
||||
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
def make_gaussian_optimizer_class(cls):
|
||||
"""Constructs a DP optimizer with Gaussian averaging of updates."""
|
||||
|
||||
class DPGaussianOptimizerClass(make_optimizer_class(cls)):
|
||||
"""DP subclass of given class cls using Gaussian averaging."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
l2_norm_clip,
|
||||
noise_multiplier,
|
||||
num_microbatches=None,
|
||||
ledger=None,
|
||||
unroll_microbatches=False,
|
||||
*args, # pylint: disable=keyword-arg-before-vararg
|
||||
**kwargs):
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(
|
||||
l2_norm_clip, l2_norm_clip * noise_multiplier)
|
||||
|
||||
if ledger:
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query,
|
||||
ledger=ledger)
|
||||
|
||||
super(DPGaussianOptimizerClass, self).__init__(
|
||||
dp_sum_query,
|
||||
num_microbatches,
|
||||
unroll_microbatches,
|
||||
*args,
|
||||
**kwargs)
|
||||
|
||||
@property
|
||||
def ledger(self):
|
||||
return self._dp_sum_query.ledger
|
||||
|
||||
return DPGaussianOptimizerClass
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
AdagradOptimizer = tf.train.AdagradOptimizer
|
||||
AdamOptimizer = tf.train.AdamOptimizer
|
||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
||||
else:
|
||||
AdagradOptimizer = tf.optimizers.Adagrad
|
||||
AdamOptimizer = tf.optimizers.Adam
|
||||
GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name
|
||||
|
||||
DPAdagradOptimizer = make_optimizer_class(AdagradOptimizer)
|
||||
DPAdamOptimizer = make_optimizer_class(AdamOptimizer)
|
||||
DPGradientDescentOptimizer = make_optimizer_class(GradientDescentOptimizer)
|
||||
|
||||
DPAdagradGaussianOptimizer = make_gaussian_optimizer_class(AdagradOptimizer)
|
||||
DPAdamGaussianOptimizer = make_gaussian_optimizer_class(AdamOptimizer)
|
||||
DPGradientDescentGaussianOptimizer = make_gaussian_optimizer_class(
|
||||
GradientDescentOptimizer)
|
130
tensorflow_privacy/privacy/optimizers/dp_optimizer_eager_test.py
Normal file
130
tensorflow_privacy/privacy/optimizers/dp_optimizer_eager_test.py
Normal file
|
@ -0,0 +1,130 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for differentially private optimizers."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import privacy_ledger
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
|
||||
class DPOptimizerEagerTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def setUp(self):
|
||||
tf.enable_eager_execution()
|
||||
super(DPOptimizerEagerTest, self).setUp()
|
||||
|
||||
def _loss_fn(self, val0, val1):
|
||||
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1,
|
||||
[-2.5, -2.5]),
|
||||
('DPGradientDescent 2', dp_optimizer.DPGradientDescentOptimizer, 2,
|
||||
[-2.5, -2.5]),
|
||||
('DPGradientDescent 4', dp_optimizer.DPGradientDescentOptimizer, 4,
|
||||
[-2.5, -2.5]),
|
||||
('DPAdagrad 1', dp_optimizer.DPAdagradOptimizer, 1, [-2.5, -2.5]),
|
||||
('DPAdagrad 2', dp_optimizer.DPAdagradOptimizer, 2, [-2.5, -2.5]),
|
||||
('DPAdagrad 4', dp_optimizer.DPAdagradOptimizer, 4, [-2.5, -2.5]),
|
||||
('DPAdam 1', dp_optimizer.DPAdamOptimizer, 1, [-2.5, -2.5]),
|
||||
('DPAdam 2', dp_optimizer.DPAdamOptimizer, 2, [-2.5, -2.5]),
|
||||
('DPAdam 4', dp_optimizer.DPAdamOptimizer, 4, [-2.5, -2.5]))
|
||||
def testBaseline(self, cls, num_microbatches, expected_answer):
|
||||
with tf.GradientTape(persistent=True) as gradient_tape:
|
||||
var0 = tf.Variable([1.0, 2.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
|
||||
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0)
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(
|
||||
dp_sum_query, 1e6, num_microbatches / 1e6)
|
||||
|
||||
opt = cls(
|
||||
dp_sum_query,
|
||||
num_microbatches=num_microbatches,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences divided by number of
|
||||
# microbatches.
|
||||
grads_and_vars = opt.compute_gradients(
|
||||
lambda: self._loss_fn(var0, data0), [var0],
|
||||
gradient_tape=gradient_tape)
|
||||
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
|
||||
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
|
||||
('DPAdam', dp_optimizer.DPAdamOptimizer))
|
||||
def testClippingNorm(self, cls):
|
||||
with tf.GradientTape(persistent=True) as gradient_tape:
|
||||
var0 = tf.Variable([0.0, 0.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
|
||||
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0)
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
|
||||
|
||||
opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences.
|
||||
grads_and_vars = opt.compute_gradients(
|
||||
lambda: self._loss_fn(var0, data0), [var0],
|
||||
gradient_tape=gradient_tape)
|
||||
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
|
||||
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
|
||||
('DPAdam', dp_optimizer.DPAdamOptimizer))
|
||||
def testNoiseMultiplier(self, cls):
|
||||
with tf.GradientTape(persistent=True) as gradient_tape:
|
||||
var0 = tf.Variable([0.0])
|
||||
data0 = tf.Variable([[0.0]])
|
||||
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(4.0, 8.0)
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
|
||||
|
||||
opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0], self.evaluate(var0))
|
||||
|
||||
grads = []
|
||||
for _ in range(1000):
|
||||
grads_and_vars = opt.compute_gradients(
|
||||
lambda: self._loss_fn(var0, data0), [var0],
|
||||
gradient_tape=gradient_tape)
|
||||
grads.append(grads_and_vars[0][0])
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
241
tensorflow_privacy/privacy/optimizers/dp_optimizer_test.py
Normal file
241
tensorflow_privacy/privacy/optimizers/dp_optimizer_test.py
Normal file
|
@ -0,0 +1,241 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for differentially private optimizers."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
import mock
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.analysis import privacy_ledger
|
||||
from tensorflow_privacy.privacy.dp_query import gaussian_query
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
|
||||
class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def _loss(self, val0, val1):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
|
||||
|
||||
# Parameters for testing: optimizer, num_microbatches, expected answer.
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', dp_optimizer.DPGradientDescentOptimizer, 1,
|
||||
[-2.5, -2.5]),
|
||||
('DPGradientDescent 2', dp_optimizer.DPGradientDescentOptimizer, 2,
|
||||
[-2.5, -2.5]),
|
||||
('DPGradientDescent 4', dp_optimizer.DPGradientDescentOptimizer, 4,
|
||||
[-2.5, -2.5]),
|
||||
('DPAdagrad 1', dp_optimizer.DPAdagradOptimizer, 1, [-2.5, -2.5]),
|
||||
('DPAdagrad 2', dp_optimizer.DPAdagradOptimizer, 2, [-2.5, -2.5]),
|
||||
('DPAdagrad 4', dp_optimizer.DPAdagradOptimizer, 4, [-2.5, -2.5]),
|
||||
('DPAdam 1', dp_optimizer.DPAdamOptimizer, 1, [-2.5, -2.5]),
|
||||
('DPAdam 2', dp_optimizer.DPAdamOptimizer, 2, [-2.5, -2.5]),
|
||||
('DPAdam 4', dp_optimizer.DPAdamOptimizer, 4, [-2.5, -2.5]))
|
||||
def testBaseline(self, cls, num_microbatches, expected_answer):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([1.0, 2.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
|
||||
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0)
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(
|
||||
dp_sum_query, 1e6, num_microbatches / 1e6)
|
||||
|
||||
opt = cls(
|
||||
dp_sum_query,
|
||||
num_microbatches=num_microbatches,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences divided by number of
|
||||
# microbatches.
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
|
||||
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
|
||||
('DPAdam', dp_optimizer.DPAdamOptimizer))
|
||||
def testClippingNorm(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0, 0.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
|
||||
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0)
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
|
||||
|
||||
opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences.
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
|
||||
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
|
||||
('DPAdam', dp_optimizer.DPAdamOptimizer))
|
||||
def testNoiseMultiplier(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0])
|
||||
data0 = tf.Variable([[0.0]])
|
||||
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(4.0, 8.0)
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
|
||||
|
||||
opt = cls(dp_sum_query, num_microbatches=1, learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0], self.evaluate(var0))
|
||||
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads = []
|
||||
for _ in range(1000):
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
grads.append(grads_and_vars[0][0])
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
|
||||
|
||||
@mock.patch.object(tf, 'logging')
|
||||
def testComputeGradientsOverrideWarning(self, mock_logging):
|
||||
|
||||
class SimpleOptimizer(tf.train.Optimizer):
|
||||
|
||||
def compute_gradients(self):
|
||||
return 0
|
||||
|
||||
dp_optimizer.make_optimizer_class(SimpleOptimizer)
|
||||
mock_logging.warning.assert_called_once_with(
|
||||
'WARNING: Calling make_optimizer_class() on class %s that overrides '
|
||||
'method compute_gradients(). Check to ensure that '
|
||||
'make_optimizer_class() does not interfere with overridden version.',
|
||||
'SimpleOptimizer')
|
||||
|
||||
def testEstimator(self):
|
||||
"""Tests that DP optimizers work with tf.estimator."""
|
||||
|
||||
def linear_model_fn(features, labels, mode):
|
||||
preds = tf.keras.layers.Dense(
|
||||
1, activation='linear', name='dense').apply(features['x'])
|
||||
|
||||
vector_loss = tf.squared_difference(labels, preds)
|
||||
scalar_loss = tf.reduce_mean(vector_loss)
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(1.0, 0.0)
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(dp_sum_query, 1e6, 1 / 1e6)
|
||||
optimizer = dp_optimizer.DPGradientDescentOptimizer(
|
||||
dp_sum_query,
|
||||
num_microbatches=1,
|
||||
learning_rate=1.0)
|
||||
global_step = tf.train.get_global_step()
|
||||
train_op = optimizer.minimize(loss=vector_loss, global_step=global_step)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
linear_regressor = tf.estimator.Estimator(model_fn=linear_model_fn)
|
||||
true_weights = np.array([[-5], [4], [3], [2]]).astype(np.float32)
|
||||
true_bias = 6.0
|
||||
train_data = np.random.normal(scale=3.0, size=(200, 4)).astype(np.float32)
|
||||
|
||||
train_labels = np.matmul(train_data,
|
||||
true_weights) + true_bias + np.random.normal(
|
||||
scale=0.1, size=(200, 1)).astype(np.float32)
|
||||
|
||||
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': train_data},
|
||||
y=train_labels,
|
||||
batch_size=20,
|
||||
num_epochs=10,
|
||||
shuffle=True)
|
||||
linear_regressor.train(input_fn=train_input_fn, steps=100)
|
||||
self.assertAllClose(
|
||||
linear_regressor.get_variable_value('dense/kernel'),
|
||||
true_weights,
|
||||
atol=1.0)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', dp_optimizer.DPGradientDescentOptimizer),
|
||||
('DPAdagrad', dp_optimizer.DPAdagradOptimizer),
|
||||
('DPAdam', dp_optimizer.DPAdamOptimizer))
|
||||
def testUnrollMicrobatches(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([1.0, 2.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
|
||||
|
||||
num_microbatches = 4
|
||||
|
||||
dp_sum_query = gaussian_query.GaussianSumQuery(1.0e9, 0.0)
|
||||
dp_sum_query = privacy_ledger.QueryWithLedger(
|
||||
dp_sum_query, 1e6, num_microbatches / 1e6)
|
||||
|
||||
opt = cls(
|
||||
dp_sum_query,
|
||||
num_microbatches=num_microbatches,
|
||||
learning_rate=2.0,
|
||||
unroll_microbatches=True)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences divided by number of
|
||||
# microbatches.
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType([-2.5, -2.5], grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', dp_optimizer.DPGradientDescentGaussianOptimizer),
|
||||
('DPAdagrad', dp_optimizer.DPAdagradGaussianOptimizer),
|
||||
('DPAdam', dp_optimizer.DPAdamGaussianOptimizer))
|
||||
def testDPGaussianOptimizerClass(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0])
|
||||
data0 = tf.Variable([[0.0]])
|
||||
|
||||
opt = cls(
|
||||
l2_norm_clip=4.0,
|
||||
noise_multiplier=2.0,
|
||||
num_microbatches=1,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0], self.evaluate(var0))
|
||||
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads = []
|
||||
for _ in range(1000):
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
grads.append(grads_and_vars[0][0])
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
153
tensorflow_privacy/privacy/optimizers/dp_optimizer_vectorized.py
Normal file
153
tensorflow_privacy/privacy/optimizers/dp_optimizer_vectorized.py
Normal file
|
@ -0,0 +1,153 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Vectorized differentially private optimizers for TensorFlow."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from distutils.version import LooseVersion
|
||||
import tensorflow as tf
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
nest = tf.contrib.framework.nest
|
||||
AdagradOptimizer = tf.train.AdagradOptimizer
|
||||
AdamOptimizer = tf.train.AdamOptimizer
|
||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
||||
parent_code = tf.train.Optimizer.compute_gradients.__code__
|
||||
GATE_OP = tf.train.Optimizer.GATE_OP # pylint: disable=invalid-name
|
||||
else:
|
||||
nest = tf.nest
|
||||
AdagradOptimizer = tf.optimizers.Adagrad
|
||||
AdamOptimizer = tf.optimizers.Adam
|
||||
GradientDescentOptimizer = tf.optimizers.SGD # pylint: disable=invalid-name
|
||||
parent_code = tf.optimizers.Optimizer._compute_gradients.__code__ # pylint: disable=protected-access
|
||||
GATE_OP = None # pylint: disable=invalid-name
|
||||
|
||||
|
||||
def make_vectorized_optimizer_class(cls):
|
||||
"""Constructs a vectorized DP optimizer class from an existing one."""
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
child_code = cls.compute_gradients.__code__
|
||||
else:
|
||||
child_code = cls._compute_gradients.__code__ # pylint: disable=protected-access
|
||||
if child_code is not parent_code:
|
||||
tf.logging.warning(
|
||||
'WARNING: Calling make_optimizer_class() on class %s that overrides '
|
||||
'method compute_gradients(). Check to ensure that '
|
||||
'make_optimizer_class() does not interfere with overridden version.',
|
||||
cls.__name__)
|
||||
|
||||
class DPOptimizerClass(cls):
|
||||
"""Differentially private subclass of given class cls."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
l2_norm_clip,
|
||||
noise_multiplier,
|
||||
num_microbatches=None,
|
||||
*args, # pylint: disable=keyword-arg-before-vararg, g-doc-args
|
||||
**kwargs):
|
||||
"""Initialize the DPOptimizerClass.
|
||||
|
||||
Args:
|
||||
l2_norm_clip: Clipping norm (max L2 norm of per microbatch gradients)
|
||||
noise_multiplier: Ratio of the standard deviation to the clipping norm
|
||||
num_microbatches: How many microbatches into which the minibatch is
|
||||
split. If None, will default to the size of the minibatch, and
|
||||
per-example gradients will be computed.
|
||||
"""
|
||||
super(DPOptimizerClass, self).__init__(*args, **kwargs)
|
||||
self._l2_norm_clip = l2_norm_clip
|
||||
self._noise_multiplier = noise_multiplier
|
||||
self._num_microbatches = num_microbatches
|
||||
|
||||
def compute_gradients(self,
|
||||
loss,
|
||||
var_list,
|
||||
gate_gradients=GATE_OP,
|
||||
aggregation_method=None,
|
||||
colocate_gradients_with_ops=False,
|
||||
grad_loss=None,
|
||||
gradient_tape=None):
|
||||
if callable(loss):
|
||||
# TF is running in Eager mode
|
||||
raise NotImplementedError('Vectorized optimizer unavailable for TF2.')
|
||||
else:
|
||||
# TF is running in graph mode, check we did not receive a gradient tape.
|
||||
if gradient_tape:
|
||||
raise ValueError('When in graph mode, a tape should not be passed.')
|
||||
|
||||
batch_size = tf.shape(loss)[0]
|
||||
if self._num_microbatches is None:
|
||||
self._num_microbatches = batch_size
|
||||
|
||||
# Note: it would be closer to the correct i.i.d. sampling of records if
|
||||
# we sampled each microbatch from the appropriate binomial distribution,
|
||||
# although that still wouldn't be quite correct because it would be
|
||||
# sampling from the dataset without replacement.
|
||||
microbatch_losses = tf.reshape(loss, [self._num_microbatches, -1])
|
||||
|
||||
if var_list is None:
|
||||
var_list = (
|
||||
tf.trainable_variables() + tf.get_collection(
|
||||
tf.GraphKeys.TRAINABLE_RESOURCE_VARIABLES))
|
||||
|
||||
def process_microbatch(microbatch_loss):
|
||||
"""Compute clipped grads for one microbatch."""
|
||||
microbatch_loss = tf.reduce_mean(microbatch_loss)
|
||||
grads, _ = zip(*super(DPOptimizerClass, self).compute_gradients(
|
||||
microbatch_loss,
|
||||
var_list,
|
||||
gate_gradients,
|
||||
aggregation_method,
|
||||
colocate_gradients_with_ops,
|
||||
grad_loss))
|
||||
grads_list = [
|
||||
g if g is not None else tf.zeros_like(v)
|
||||
for (g, v) in zip(list(grads), var_list)
|
||||
]
|
||||
# Clip gradients to have L2 norm of l2_norm_clip.
|
||||
# Here, we use TF primitives rather than the built-in
|
||||
# tf.clip_by_global_norm() so that operations can be vectorized
|
||||
# across microbatches.
|
||||
grads_flat = nest.flatten(grads_list)
|
||||
squared_l2_norms = [tf.reduce_sum(tf.square(g)) for g in grads_flat]
|
||||
global_norm = tf.sqrt(tf.add_n(squared_l2_norms))
|
||||
div = tf.maximum(global_norm / self._l2_norm_clip, 1.)
|
||||
clipped_flat = [g / div for g in grads_flat]
|
||||
clipped_grads = nest.pack_sequence_as(grads_list, clipped_flat)
|
||||
return clipped_grads
|
||||
|
||||
clipped_grads = tf.vectorized_map(process_microbatch, microbatch_losses)
|
||||
|
||||
def reduce_noise_normalize_batch(stacked_grads):
|
||||
summed_grads = tf.reduce_sum(stacked_grads, axis=0)
|
||||
noise_stddev = self._l2_norm_clip * self._noise_multiplier
|
||||
noise = tf.random.normal(tf.shape(summed_grads),
|
||||
stddev=noise_stddev)
|
||||
noised_grads = summed_grads + noise
|
||||
return noised_grads / tf.cast(self._num_microbatches, tf.float32)
|
||||
|
||||
final_grads = nest.map_structure(reduce_noise_normalize_batch,
|
||||
clipped_grads)
|
||||
|
||||
return list(zip(final_grads, var_list))
|
||||
|
||||
return DPOptimizerClass
|
||||
|
||||
|
||||
VectorizedDPAdagrad = make_vectorized_optimizer_class(AdagradOptimizer)
|
||||
VectorizedDPAdam = make_vectorized_optimizer_class(AdamOptimizer)
|
||||
VectorizedDPSGD = make_vectorized_optimizer_class(GradientDescentOptimizer)
|
|
@ -0,0 +1,204 @@
|
|||
# Copyright 2019, The TensorFlow Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for differentially private optimizers."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
from absl.testing import parameterized
|
||||
import mock
|
||||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_vectorized import VectorizedDPAdagrad
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_vectorized import VectorizedDPAdam
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer_vectorized import VectorizedDPSGD
|
||||
|
||||
|
||||
class DPOptimizerTest(tf.test.TestCase, parameterized.TestCase):
|
||||
|
||||
def _loss(self, val0, val1):
|
||||
"""Loss function that is minimized at the mean of the input points."""
|
||||
return 0.5 * tf.reduce_sum(tf.squared_difference(val0, val1), axis=1)
|
||||
|
||||
# Parameters for testing: optimizer, num_microbatches, expected answer.
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent 1', VectorizedDPSGD, 1, [-2.5, -2.5]),
|
||||
('DPGradientDescent 2', VectorizedDPSGD, 2, [-2.5, -2.5]),
|
||||
('DPGradientDescent 4', VectorizedDPSGD, 4, [-2.5, -2.5]),
|
||||
('DPAdagrad 1', VectorizedDPAdagrad, 1, [-2.5, -2.5]),
|
||||
('DPAdagrad 2', VectorizedDPAdagrad, 2, [-2.5, -2.5]),
|
||||
('DPAdagrad 4', VectorizedDPAdagrad, 4, [-2.5, -2.5]),
|
||||
('DPAdam 1', VectorizedDPAdam, 1, [-2.5, -2.5]),
|
||||
('DPAdam 2', VectorizedDPAdam, 2, [-2.5, -2.5]),
|
||||
('DPAdam 4', VectorizedDPAdam, 4, [-2.5, -2.5]))
|
||||
def testBaseline(self, cls, num_microbatches, expected_answer):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([1.0, 2.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [5.0, 6.0], [7.0, 8.0], [-1.0, 0.0]])
|
||||
|
||||
opt = cls(
|
||||
l2_norm_clip=1.0e9,
|
||||
noise_multiplier=0.0,
|
||||
num_microbatches=num_microbatches,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([1.0, 2.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences divided by number of
|
||||
# microbatches.
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType(expected_answer, grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
def testClippingNorm(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0, 0.0])
|
||||
data0 = tf.Variable([[3.0, 4.0], [6.0, 8.0]])
|
||||
|
||||
opt = cls(l2_norm_clip=1.0,
|
||||
noise_multiplier=0.,
|
||||
num_microbatches=1,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0, 0.0], self.evaluate(var0))
|
||||
|
||||
# Expected gradient is sum of differences.
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
self.assertAllCloseAccordingToType([-0.6, -0.8], grads_and_vars[0][0])
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
def testNoiseMultiplier(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0])
|
||||
data0 = tf.Variable([[0.0]])
|
||||
|
||||
opt = cls(l2_norm_clip=4.0,
|
||||
noise_multiplier=8.0,
|
||||
num_microbatches=1,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0], self.evaluate(var0))
|
||||
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads = []
|
||||
for _ in range(5000):
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
grads.append(grads_and_vars[0][0])
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(np.std(grads), 4.0 * 8.0, 0.5)
|
||||
|
||||
@mock.patch.object(tf, 'logging')
|
||||
def testComputeGradientsOverrideWarning(self, mock_logging):
|
||||
|
||||
class SimpleOptimizer(tf.train.Optimizer):
|
||||
|
||||
def compute_gradients(self):
|
||||
return 0
|
||||
|
||||
dp_optimizer_vectorized.make_vectorized_optimizer_class(SimpleOptimizer)
|
||||
mock_logging.warning.assert_called_once_with(
|
||||
'WARNING: Calling make_optimizer_class() on class %s that overrides '
|
||||
'method compute_gradients(). Check to ensure that '
|
||||
'make_optimizer_class() does not interfere with overridden version.',
|
||||
'SimpleOptimizer')
|
||||
|
||||
def testEstimator(self):
|
||||
"""Tests that DP optimizers work with tf.estimator."""
|
||||
|
||||
def linear_model_fn(features, labels, mode):
|
||||
preds = tf.keras.layers.Dense(
|
||||
1, activation='linear', name='dense').apply(features['x'])
|
||||
|
||||
vector_loss = tf.squared_difference(labels, preds)
|
||||
scalar_loss = tf.reduce_mean(vector_loss)
|
||||
optimizer = VectorizedDPSGD(
|
||||
l2_norm_clip=1.0,
|
||||
noise_multiplier=0.,
|
||||
num_microbatches=1,
|
||||
learning_rate=1.0)
|
||||
global_step = tf.train.get_global_step()
|
||||
train_op = optimizer.minimize(loss=vector_loss, global_step=global_step)
|
||||
return tf.estimator.EstimatorSpec(
|
||||
mode=mode, loss=scalar_loss, train_op=train_op)
|
||||
|
||||
linear_regressor = tf.estimator.Estimator(model_fn=linear_model_fn)
|
||||
true_weights = np.array([[-5], [4], [3], [2]]).astype(np.float32)
|
||||
true_bias = 6.0
|
||||
train_data = np.random.normal(scale=3.0, size=(200, 4)).astype(np.float32)
|
||||
|
||||
train_labels = np.matmul(train_data,
|
||||
true_weights) + true_bias + np.random.normal(
|
||||
scale=0.1, size=(200, 1)).astype(np.float32)
|
||||
|
||||
train_input_fn = tf.estimator.inputs.numpy_input_fn(
|
||||
x={'x': train_data},
|
||||
y=train_labels,
|
||||
batch_size=20,
|
||||
num_epochs=10,
|
||||
shuffle=True)
|
||||
linear_regressor.train(input_fn=train_input_fn, steps=100)
|
||||
self.assertAllClose(
|
||||
linear_regressor.get_variable_value('dense/kernel'),
|
||||
true_weights,
|
||||
atol=1.0)
|
||||
|
||||
@parameterized.named_parameters(
|
||||
('DPGradientDescent', VectorizedDPSGD),
|
||||
('DPAdagrad', VectorizedDPAdagrad),
|
||||
('DPAdam', VectorizedDPAdam))
|
||||
def testDPGaussianOptimizerClass(self, cls):
|
||||
with self.cached_session() as sess:
|
||||
var0 = tf.Variable([0.0])
|
||||
data0 = tf.Variable([[0.0]])
|
||||
|
||||
opt = cls(
|
||||
l2_norm_clip=4.0,
|
||||
noise_multiplier=2.0,
|
||||
num_microbatches=1,
|
||||
learning_rate=2.0)
|
||||
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
# Fetch params to validate initial values
|
||||
self.assertAllClose([0.0], self.evaluate(var0))
|
||||
|
||||
gradient_op = opt.compute_gradients(self._loss(data0, var0), [var0])
|
||||
grads = []
|
||||
for _ in range(1000):
|
||||
grads_and_vars = sess.run(gradient_op)
|
||||
grads.append(grads_and_vars[0][0])
|
||||
|
||||
# Test standard deviation is close to l2_norm_clip * noise_multiplier.
|
||||
self.assertNear(np.std(grads), 2.0 * 4.0, 0.5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
|
@ -16,9 +16,9 @@ from __future__ import absolute_import
|
|||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
import tensorflow as tf # pylint: disable=wrong-import-position
|
||||
from privacy.bolt_on import losses # pylint: disable=wrong-import-position
|
||||
from privacy.bolt_on import models # pylint: disable=wrong-import-position
|
||||
from privacy.bolt_on.optimizers import BoltOn # pylint: disable=wrong-import-position
|
||||
from tensorflow_privacy.privacy.bolt_on import losses # pylint: disable=wrong-import-position
|
||||
from tensorflow_privacy.privacy.bolt_on import models # pylint: disable=wrong-import-position
|
||||
from tensorflow_privacy.privacy.bolt_on.optimizers import BoltOn # pylint: disable=wrong-import-position
|
||||
# -------
|
||||
# First, we will create a binary classification dataset with a single output
|
||||
# dimension. The samples for each label are repeated data points at different
|
||||
|
|
|
@ -44,10 +44,10 @@ import numpy as np
|
|||
import tensorflow as tf
|
||||
import tensorflow_datasets as tfds
|
||||
|
||||
from privacy.analysis import privacy_ledger
|
||||
from privacy.analysis.rdp_accountant import compute_rdp
|
||||
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from privacy.optimizers import dp_optimizer
|
||||
from tensorflow_privacy.privacy.analysis import privacy_ledger
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
flags.DEFINE_boolean(
|
||||
'dpsgd', True, 'If True, train with DP-SGD. If False, '
|
||||
|
|
|
@ -26,10 +26,10 @@ from distutils.version import LooseVersion
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis import privacy_ledger
|
||||
from privacy.analysis.rdp_accountant import compute_rdp_from_ledger
|
||||
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from privacy.optimizers import dp_optimizer
|
||||
from tensorflow_privacy.privacy.analysis import privacy_ledger
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp_from_ledger
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
||||
|
|
|
@ -24,9 +24,9 @@ from distutils.version import LooseVersion
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis.rdp_accountant import compute_rdp
|
||||
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
||||
|
|
|
@ -25,9 +25,9 @@ from distutils.version import LooseVersion
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis.rdp_accountant import compute_rdp
|
||||
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers.dp_optimizer import DPGradientDescentGaussianOptimizer
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
||||
|
|
|
@ -26,9 +26,9 @@ from distutils.version import LooseVersion
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis.rdp_accountant import compute_rdp
|
||||
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from privacy.optimizers import dp_optimizer_vectorized
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer_vectorized
|
||||
|
||||
|
||||
flags.DEFINE_boolean(
|
||||
|
|
|
@ -35,9 +35,9 @@ from distutils.version import LooseVersion
|
|||
import numpy as np
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis.rdp_accountant import compute_rdp
|
||||
from privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from privacy.optimizers import dp_optimizer
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
|
||||
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
|
||||
from tensorflow_privacy.privacy.optimizers import dp_optimizer
|
||||
|
||||
if LooseVersion(tf.__version__) < LooseVersion('2.0.0'):
|
||||
GradientDescentOptimizer = tf.train.GradientDescentOptimizer
|
||||
|
|
Loading…
Reference in a new issue