Add files via upload

This commit is contained in:
woodyx218 2020-01-19 20:27:35 +08:00 committed by GitHub
parent 47a984dc25
commit 1d5c5ac2fc
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 435 additions and 258 deletions

178
tutorials/adult_tutorial.py Normal file
View file

@ -0,0 +1,178 @@
# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
"""Training a one-layer NN on Adult data with differentially private SGD optimizer."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
import numpy as np
import tensorflow as tf
import pandas as pd
from sklearn.model_selection import KFold
# from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
# from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer
from tensorflow_privacy.privacy.analysis.gdp_accountant import *
#### FLAGS
FLAGS = flags.FLAGS
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD.'
'If False, train with vanilla SGD.')
flags.DEFINE_float('learning_rate', .15, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.55,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm')
flags.DEFINE_integer('epochs', 20, 'Number of epochs')
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
flags.DEFINE_string('model_dir', None, 'Model directory')
microbatches = 256
def nn_model_fn(features, labels, mode):
''' Define CNN architecture using tf.keras.layers.'''
input_layer = tf.reshape(features['x'], [-1, 123])
y = tf.keras.layers.Dense(16, activation='relu').apply(input_layer)
logits = tf.keras.layers.Dense(2).apply(y)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(vector_loss)
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPGradientDescentGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.compat.v1.train.GradientDescentOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.compat.v1.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
train_op=train_op)
# Add evaluation metrics (for EVAL mode).
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'accuracy':
tf.compat.v1.metrics.accuracy(
labels=labels,
predictions=tf.argmax(input=logits, axis=1))
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
eval_metric_ops=eval_metric_ops)
return None
def load_adult():
"""Loads ADULT a2a as in LIBSVM and preprocesses to combine training and validation data."""
# https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
X = pd.read_csv("adult.csv")
kf = KFold(n_splits=10)
for train_index, test_index in kf.split(X):
train, test = X.iloc[train_index, :], X.iloc[test_index, :]
train_data = train.iloc[:, range(X.shape[1]-1)].values.astype('float32')
test_data = test.iloc[:, range(X.shape[1]-1)].values.astype('float32')
train_labels = (train.iloc[:, X.shape[1]-1] == 1).astype('int32').values
test_labels = (test.iloc[:, X.shape[1]-1] == 1).astype('int32').values
return train_data, train_labels, test_data, test_labels
def main(unused_argv):
'''main'''
tf.compat.v1.logging.set_verbosity(0)
# Load training and test data.
train_data, train_labels, test_data, test_labels = load_adult()
# Instantiate the tf.Estimator.
adult_classifier = tf.compat.v1.estimator.Estimator(model_fn=nn_model_fn,
model_dir=FLAGS.model_dir)
# Create tf.Estimator input functions for the training and test data.
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={'x': test_data},
y=test_labels,
num_epochs=1,
shuffle=False)
# Training loop.
steps_per_epoch = 29305 // 256
test_accuracy_list = []
for epoch in range(1, FLAGS.epochs + 1):
for step in range(steps_per_epoch):
whether = np.random.random_sample(29305) > (1-256/29305)
subsampling = [i for i in np.arange(29305) if whether[i]]
global microbatches
microbatches = len(subsampling)
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={'x': train_data[subsampling]},
y=train_labels[subsampling],
batch_size=len(subsampling),
num_epochs=1,
shuffle=True)
# Train the model for one step.
adult_classifier.train(input_fn=train_input_fn, steps=1)
# Evaluate the model and print results
eval_results = adult_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['accuracy']
test_accuracy_list.append(test_accuracy)
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_eps_Poisson(epoch, FLAGS.noise_multiplier, 29305, 256, 1e-5)
mu = compute_mu_Poisson(epoch, FLAGS.noise_multiplier, 29305, 256)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
print('For delta=1e-5, the current mu is: %.2f' % mu)
if mu > FLAGS.max_mu:
break
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
app.run(main)

View file

@ -19,161 +19,163 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
import numpy as np
import tensorflow as tf
from scipy.stats import norm
from keras.preprocessing import sequence
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
#from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
#from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer
from GDprivacy_accountants import *
from tensorflow_privacy.privacy.analysis.gdp_accountant import *
from keras.preprocessing import sequence
#### FLAGS
tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
tf.flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
tf.flags.DEFINE_float('noise_multiplier', 0.56,
'Ratio of the standard deviation to the clipping norm')
tf.flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm')
tf.flags.DEFINE_integer('epochs', 25, 'Number of epochs')
tf.flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
tf.flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = flags.FLAGS
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', 0.02, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.56,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 1, 'Clipping norm')
flags.DEFINE_integer('epochs', 25, 'Number of epochs')
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = tf.flags.FLAGS
microbatches=512
np.random.seed(0)
tf.set_random_seed(0)
microbatches = 512
max_features = 10000
# cut texts after this number of words (among top max_features most common words)
maxlen = 256
def rnn_model_fn(features, labels, mode):
# Define CNN architecture using tf.keras.layers.
input_layer = tf.reshape(features['x'], [-1,maxlen])
y = tf.keras.layers.Embedding(max_features,16).apply(input_layer)
y=tf.keras.layers.GlobalAveragePooling1D().apply(y)
y= tf.keras.layers.Dense(16, activation='relu').apply(y)
logits= tf.keras.layers.Dense(2).apply(y)
def nn_model_fn(features, labels, mode):
'''Define NN architecture using tf.keras.layers.'''
input_layer = tf.reshape(features['x'], [-1, maxlen])
y = tf.keras.layers.Embedding(max_features, 16).apply(input_layer)
y = tf.keras.layers.GlobalAveragePooling1D().apply(y)
y = tf.keras.layers.Dense(16, activation='relu').apply(y)
logits = tf.keras.layers.Dense(2).apply(y)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(vector_loss)
# Calculate loss as a vector (to support microbatches in DP-SGD).
vector_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=labels, logits=logits)
# Define mean of loss across minibatch (for reporting through tf.Estimator).
scalar_loss = tf.reduce_mean(vector_loss)
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.compat.v1.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.compat.v1.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
train_op=train_op)
global_step = tf.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
train_op=train_op)
# Add evaluation metrics (for EVAL mode).
elif mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'accuracy':
tf.metrics.accuracy(
labels=labels,
predictions=tf.argmax(input=logits, axis=1))
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
eval_metric_ops=eval_metric_ops)
# Add evaluation metrics (for EVAL mode).
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'accuracy':
tf.compat.v1.metrics.accuracy(
labels=labels,
predictions=tf.argmax(input=logits, axis=1))
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
eval_metric_ops=eval_metric_ops)
return None
def load_imdb():
(train_data,train_labels), (test_data,test_labels) = tf.keras.datasets.imdb.load_data(num_words=max_features)
'''Load IMDB movie reviews data'''
(train_data, train_labels), (test_data, test_labels) = \
tf.keras.datasets.imdb.load_data(num_words=max_features)
train_data = sequence.pad_sequences(train_data, maxlen=maxlen).astype('float32')
test_data = sequence.pad_sequences(test_data, maxlen=maxlen).astype('float32')
return train_data,train_labels,test_data,test_labels
train_data = sequence.pad_sequences(train_data, maxlen=maxlen).astype('float32')
test_data = sequence.pad_sequences(test_data, maxlen=maxlen).astype('float32')
return train_data, train_labels, test_data, test_labels
def main(unused_argv):
tf.logging.set_verbosity(3)
'''main'''
tf.compat.v1.logging.set_verbosity(3)
# Load training and test data.
train_data,train_labels,test_data,test_labels = load_imdb()
# Load training and test data.
train_data, train_labels, test_data, test_labels = load_imdb()
# Instantiate the tf.Estimator.
imdb_classifier = tf.estimator.Estimator(model_fn=rnn_model_fn,
model_dir=FLAGS.model_dir)
# Instantiate the tf.Estimator.
imdb_classifier = tf.estimator.Estimator(model_fn=nn_model_fn,
model_dir=FLAGS.model_dir)
# Create tf.Estimator input functions for the training and test data.
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': test_data},
y=test_labels,
num_epochs=1,
shuffle=False)
# Create tf.Estimator input functions for the training and test data.
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={'x': test_data},
y=test_labels,
num_epochs=1,
shuffle=False)
# Training loop.
steps_per_epoch = 25000 // 512
test_accuracy_list = []
# Training loop.
steps_per_epoch = 25000 // 512
test_accuracy_list = []
for epoch in range(1, FLAGS.epochs + 1):
np.random.seed(epoch)
for step in range(steps_per_epoch):
tf.set_random_seed(0)
whether=np.random.random_sample(25000)>(1-512/25000)
subsampling=[i for i in np.arange(25000) if whether[i]]
global microbatches
microbatches=len(subsampling)
for epoch in range(1, FLAGS.epochs + 1):
for step in range(steps_per_epoch):
whether = np.random.random_sample(25000) > (1-512/25000)
subsampling = [i for i in np.arange(25000) if whether[i]]
global microbatches
microbatches = len(subsampling)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'x': train_data[subsampling]},
y=train_labels[subsampling],
batch_size=len(subsampling),
num_epochs=1,
shuffle=False)
# Train the model for one step.
imdb_classifier.train(input_fn=train_input_fn, steps=1)
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={'x': train_data[subsampling]},
y=train_labels[subsampling],
batch_size=len(subsampling),
num_epochs=1,
shuffle=False)
# Train the model for one step.
imdb_classifier.train(input_fn=train_input_fn, steps=1)
# Evaluate the model and print results
eval_results = imdb_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['accuracy']
test_accuracy_list.append(test_accuracy)
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
# Evaluate the model and print results
eval_results = imdb_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['accuracy']
test_accuracy_list.append(test_accuracy)
print('Test accuracy after %d epochs is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_epsP(epoch,FLAGS.noise_multiplier,25000,512,1e-5)
mu= compute_muP(epoch,FLAGS.noise_multiplier,25000,512)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
print('For delta=1e-5, the current mu is: %.2f' % mu)
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_eps_Poisson(epoch, FLAGS.noise_multiplier, 25000, 512, 1e-5)
mu = compute_mu_Poisson(epoch, FLAGS.noise_multiplier, 25000, 512)
print('For delta=1e-5, the current epsilon is: %.2f' % eps)
print('For delta=1e-5, the current mu is: %.2f' % mu)
if mu>FLAGS.max_mu:
break
else:
print('Trained with vanilla non-private SGD optimizer')
if mu > FLAGS.max_mu:
break
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
tf.app.run()
app.run(main)

View file

@ -24,47 +24,45 @@ from absl import flags
import numpy as np
import tensorflow as tf
from scipy.stats import norm
import pandas as pd
from scipy.stats import rankdata
from sklearn.model_selection import train_test_split
from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
#from tensorflow_privacy.privacy.analysis.rdp_accountant import compute_rdp
#from tensorflow_privacy.privacy.analysis.rdp_accountant import get_privacy_spent
from tensorflow_privacy.privacy.optimizers import dp_optimizer
from GDprivacy_accountants import *
from tensorflow_privacy.privacy.analysis.gdp_accountant import *
#### FLAGS
tf.flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
tf.flags.DEFINE_float('learning_rate', .01, 'Learning rate for training')
tf.flags.DEFINE_float('noise_multiplier', 0.55,
'Ratio of the standard deviation to the clipping norm')
tf.flags.DEFINE_float('l2_norm_clip', 5, 'Clipping norm')
tf.flags.DEFINE_integer('epochs', 25, 'Number of epochs')
tf.flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
tf.flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = flags.FLAGS
flags.DEFINE_boolean('dpsgd', True, 'If True, train with DP-SGD. If False, '
'train with vanilla SGD.')
flags.DEFINE_float('learning_rate', .01, 'Learning rate for training')
flags.DEFINE_float('noise_multiplier', 0.55,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 5, 'Clipping norm')
flags.DEFINE_integer('epochs', 25, 'Number of epochs')
flags.DEFINE_integer('max_mu', 2, 'GDP upper limit')
flags.DEFINE_string('model_dir', None, 'Model directory')
FLAGS = tf.flags.FLAGS
microbatches=10000
np.random.seed(0)
tf.set_random_seed(0)
n_users=6040
n_movies=3706
microbatches = 10000
def nn_model_fn(features, labels, mode):
# Adapted from https://github.com/hexiangnan/neural_collaborative_filtering
'''NN adapted from github.com/hexiangnan/neural_collaborative_filtering'''
n_latent_factors_user = 10
n_latent_factors_movie = 10
n_latent_factors_mf = 5
user_input = tf.reshape(features['user'], [-1,1])
item_input = tf.reshape(features['movie'], [-1,1])
user_input = tf.reshape(features['user'], [-1, 1])
item_input = tf.reshape(features['movie'], [-1, 1])
mf_embedding_user = tf.keras.layers.Embedding(n_users,n_latent_factors_mf,input_length=1)
mf_embedding_item = tf.keras.layers.Embedding(n_movies,n_latent_factors_mf,input_length=1)
mlp_embedding_user = tf.keras.layers.Embedding(n_users,n_latent_factors_user,input_length=1)
mlp_embedding_item = tf.keras.layers.Embedding(n_movies,n_latent_factors_movie,input_length=1)
# number of users: 6040; number of movies: 3706
mf_embedding_user = tf.keras.layers.Embedding(6040, n_latent_factors_mf, input_length=1)
mf_embedding_item = tf.keras.layers.Embedding(3706, n_latent_factors_mf, input_length=1)
mlp_embedding_user = tf.keras.layers.Embedding(6040, n_latent_factors_user, input_length=1)
mlp_embedding_item = tf.keras.layers.Embedding(3706, n_latent_factors_movie, input_length=1)
# GMF part
# Flatten the embedding vector as latent features in GMF
@ -91,126 +89,125 @@ def nn_model_fn(features, labels, mode):
# Configure the training op (for TRAIN mode).
if mode == tf.estimator.ModeKeys.TRAIN:
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.compat.v1.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
if FLAGS.dpsgd:
# Use DP version of GradientDescentOptimizer. Other optimizers are
# available in dp_optimizer. Most optimizers inheriting from
# tf.train.Optimizer should be wrappable in differentially private
# counterparts by calling dp_optimizer.optimizer_from_args().
optimizer = dp_optimizer.DPAdamGaussianOptimizer(
l2_norm_clip=FLAGS.l2_norm_clip,
noise_multiplier=FLAGS.noise_multiplier,
num_microbatches=microbatches,
learning_rate=FLAGS.learning_rate)
opt_loss = vector_loss
else:
optimizer = tf.train.AdamOptimizer(
learning_rate=FLAGS.learning_rate)
opt_loss = scalar_loss
global_step = tf.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
train_op=train_op)
global_step = tf.compat.v1.train.get_global_step()
train_op = optimizer.minimize(loss=opt_loss, global_step=global_step)
# In the following, we pass the mean of the loss (scalar_loss) rather than
# the vector_loss because tf.estimator requires a scalar loss. This is only
# used for evaluation and debugging by tf.estimator. The actual loss being
# minimized is opt_loss defined above and passed to optimizer.minimize().
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
train_op=train_op)
# Add evaluation metrics (for EVAL mode).
elif mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'rmse':
tf.metrics.root_mean_squared_error(
labels=tf.cast(labels, tf.float32),
predictions=tf.tensordot(a=tf.nn.softmax(logits,axis=1),b=tf.constant(np.array([0,1,2,3,4]),dtype=tf.float32),axes=1))
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
eval_metric_ops=eval_metric_ops)
if mode == tf.estimator.ModeKeys.EVAL:
eval_metric_ops = {
'rmse':
tf.compat.v1.metrics.root_mean_squared_error(
labels=tf.cast(labels, tf.float32),
predictions=tf.tensordot(a=tf.nn.softmax(logits, axis=1),
b=tf.constant(np.array([0, 1, 2, 3, 4]),
dtype=tf.float32),
axes=1))
}
return tf.estimator.EstimatorSpec(mode=mode,
loss=scalar_loss,
eval_metric_ops=eval_metric_ops)
return None
def load_adult():
import pandas as pd
import numpy as np
data = pd.read_csv('ratings.dat', sep='::', header=None,names=["userId", "movieId", "rating", "timestamp"])
n_users=len(set(data['userId']))
n_movies=len(set(data['movieId']))
print('number of movie: ',n_movies)
print('number of user: ',n_users)
"""Loads MovieLens 1M as from https://grouplens.org/datasets/movielens/1m"""
data = pd.read_csv('ratings.dat', sep='::', header=None,
names=["userId", "movieId", "rating", "timestamp"])
n_users = len(set(data['userId']))
n_movies = len(set(data['movieId']))
print('number of movie: ', n_movies)
print('number of user: ', n_users)
# give unique dense movie index to movieId
from scipy.stats import rankdata
data['movieIndex']=rankdata(data['movieId'], method='dense')
data['movieIndex'] = rankdata(data['movieId'], method='dense')
# minus one to reduce the minimum value to 0, which is the start of col index
print('number of ratings:',data.shape[0])
print('percentage of sparsity:',(1-data.shape[0]/n_users/n_movies)*100,'%')
print('number of ratings:', data.shape[0])
print('percentage of sparsity:', (1-data.shape[0]/n_users/n_movies)*100, '%')
from sklearn.model_selection import train_test_split
train,test=train_test_split(data,test_size=0.2,random_state=100)
train, test = train_test_split(data, test_size=0.2, random_state=100)
return train.values-1, test.values-1, np.mean(train['rating'])
def main(unused_argv):
tf.logging.set_verbosity(3)
'''main'''
tf.compat.v1.logging.set_verbosity(3)
# Load training and test data.
train_data, test_data, mean = load_adult()
# Load training and test data.
train_data, test_data, mean = load_adult()
# Instantiate the tf.Estimator.
adult_classifier = tf.estimator.Estimator(model_fn=nn_model_fn,
model_dir=FLAGS.model_dir)
# Instantiate the tf.Estimator.
ml_classifier = tf.estimator.Estimator(model_fn=nn_model_fn,
model_dir=FLAGS.model_dir)
# Create tf.Estimator input functions for the training and test data.
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'user': test_data[:,0], 'movie': test_data[:,4]},
y=test_data[:,2],
num_epochs=1,
shuffle=False)
# Create tf.Estimator input functions for the training and test data.
eval_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={'user': test_data[:, 0], 'movie': test_data[:, 4]},
y=test_data[:, 2],
num_epochs=1,
shuffle=False)
# Training loop.
steps_per_epoch = 800167 // 10000
test_accuracy_list = []
for epoch in range(1, FLAGS.epochs + 1):
np.random.seed(epoch)
for step in range(steps_per_epoch):
tf.set_random_seed(0)
whether=np.random.random_sample(800167)>(1-10000/800167)
subsampling=[i for i in np.arange(800167) if whether[i]]
global microbatches
microbatches=len(subsampling)
# Training loop.
steps_per_epoch = 800167 // 10000
test_accuracy_list = []
for epoch in range(1, FLAGS.epochs + 1):
for step in range(steps_per_epoch):
whether = np.random.random_sample(800167) > (1-10000/800167)
subsampling = [i for i in np.arange(800167) if whether[i]]
global microbatches
microbatches = len(subsampling)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={'user': train_data[subsampling,0], 'movie': train_data[subsampling,4]},
y=train_data[subsampling,2],
batch_size=len(subsampling),
num_epochs=1,
shuffle=True)
# Train the model for one step.
adult_classifier.train(input_fn=train_input_fn, steps=1)
train_input_fn = tf.compat.v1.estimator.inputs.numpy_input_fn(
x={'user': train_data[subsampling, 0], 'movie': train_data[subsampling, 4]},
y=train_data[subsampling, 2],
batch_size=len(subsampling),
num_epochs=1,
shuffle=True)
# Train the model for one step.
ml_classifier.train(input_fn=train_input_fn, steps=1)
# Evaluate the model and print results
eval_results = adult_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['rmse']
test_accuracy_list.append(test_accuracy)
print('Test RMSE after %d epochs is: %.3f' % (epoch, test_accuracy))
# Evaluate the model and print results
eval_results = ml_classifier.evaluate(input_fn=eval_input_fn)
test_accuracy = eval_results['rmse']
test_accuracy_list.append(test_accuracy)
print('Test RMSE after %d epochs is: %.3f' % (epoch, test_accuracy))
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_epsP(epoch,FLAGS.noise_multiplier,800167,10000,1e-6)
mu= compute_muP(epoch,FLAGS.noise_multiplier,800167,10000)
print('For delta=1e-6, the current epsilon is: %.2f' % eps)
print('For delta=1e-6, the current mu is: %.2f' % mu)
# Compute the privacy budget expended so far.
if FLAGS.dpsgd:
eps = compute_eps_Poisson(epoch, FLAGS.noise_multiplier, 800167, 10000, 1e-6)
mu = compute_mu_Poisson(epoch, FLAGS.noise_multiplier, 800167, 10000)
print('For delta=1e-6, the current epsilon is: %.2f' % eps)
print('For delta=1e-6, the current mu is: %.2f' % mu)
if mu>FLAGS.max_mu:
break
else:
print('Trained with vanilla non-private SGD optimizer')
if mu > FLAGS.max_mu:
break
else:
print('Trained with vanilla non-private SGD optimizer')
if __name__ == '__main__':
tf.app.run()
app.run(main)