diff --git a/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy.py b/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy.py index 296618b..c1bf270 100644 --- a/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy.py +++ b/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy.py @@ -52,11 +52,6 @@ flags.DEFINE_float('noise_multiplier', None, 'Noise multiplier for DP-SGD') flags.DEFINE_float('epochs', None, 'Number of epochs (may be fractional)') flags.DEFINE_float('delta', 1e-6, 'Target delta') -flags.mark_flag_as_required('N') -flags.mark_flag_as_required('batch_size') -flags.mark_flag_as_required('noise_multiplier') -flags.mark_flag_as_required('epochs') - def apply_dp_sgd_analysis(q, sigma, steps, orders, delta): """Compute and print results of DP-SGD analysis.""" @@ -79,18 +74,30 @@ def apply_dp_sgd_analysis(q, sigma, steps, orders, delta): print('The privacy estimate is likely to be improved by expanding ' 'the set of orders.') + return eps, opt_order + + +def compute_dp_sgd_privacy(n, batch_size, noise_multiplier, epochs, delta): + """Compute epsilon based on the given hyperparameters.""" + q = batch_size / n # q - the sampling ratio. + if q > 1: + raise app.UsageError('n must be larger than the batch size.') + orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] + + list(range(5, 64)) + [128, 256, 512]) + steps = int(math.ceil(epochs * n / batch_size)) + + return apply_dp_sgd_analysis(q, noise_multiplier, steps, orders, delta) + def main(argv): del argv # argv is not used. - q = FLAGS.batch_size / FLAGS.N # q - the sampling ratio. - if q > 1: - raise app.UsageError('N must be larger than the batch size.') - orders = ([1.25, 1.5, 1.75, 2., 2.25, 2.5, 3., 3.5, 4., 4.5] + - list(range(5, 64)) + [128, 256, 512]) - steps = int(math.ceil(FLAGS.epochs * FLAGS.N / FLAGS.batch_size)) - - apply_dp_sgd_analysis(q, FLAGS.noise_multiplier, steps, orders, FLAGS.delta) + assert FLAGS.N is not None, 'Flag N is missing.' + assert FLAGS.batch_size is not None, 'Flag batch_size is missing.' + assert FLAGS.noise_multiplier is not None, 'Flag noise_multiplier is missing.' + assert FLAGS.epochs is not None, 'Flag epochs is missing.' + compute_dp_sgd_privacy(FLAGS.N, FLAGS.batch_size, FLAGS.noise_multiplier, + FLAGS.epochs, FLAGS.delta) if __name__ == '__main__': diff --git a/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy_test.py b/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy_test.py new file mode 100644 index 0000000..96bfb00 --- /dev/null +++ b/tensorflow_privacy/privacy/analysis/compute_dp_sgd_privacy_test.py @@ -0,0 +1,41 @@ +# Copyright 2019 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================== + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +from absl.testing import absltest +from absl.testing import parameterized + +from tensorflow_privacy.privacy.analysis import compute_dp_sgd_privacy + + +class ComputeDpSgdPrivacyTest(parameterized.TestCase): + + @parameterized.named_parameters( + ('Test0', 60000, 150, 1.3, 15, 1e-5, 0.941870567, 19.0), + ('Test1', 100000, 100, 1.0, 30, 1e-7, 1.70928734, 13.0), + ('Test2', 100000000, 1024, 0.1, 10, 1e-7, 5907984.81339406, 1.25), + ) + def test_compute_dp_sgd_privacy(self, n, batch_size, noise_multiplier, epochs, + delta, expected_eps, expected_order): + eps, order = compute_dp_sgd_privacy.compute_dp_sgd_privacy( + n, batch_size, noise_multiplier, epochs, delta) + self.assertAlmostEqual(eps, expected_eps) + self.assertAlmostEqual(order, expected_order) + +if __name__ == '__main__': + absltest.main()