Allow tensor buffers to automatically resize as needed.
PiperOrigin-RevId: 246594454
This commit is contained in:
parent
beb86c6e18
commit
28639ba0a8
3 changed files with 161 additions and 38 deletions
|
@ -11,8 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""A lightweight fixed-sized buffer for maintaining lists.
|
||||
"""
|
||||
"""A lightweight buffer for maintaining tensors."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -22,7 +21,7 @@ import tensorflow as tf
|
|||
|
||||
|
||||
class TensorBuffer(object):
|
||||
"""A lightweight fixed-sized buffer for maintaining lists.
|
||||
"""A lightweight buffer for maintaining lists.
|
||||
|
||||
The TensorBuffer accumulates tensors of the given shape into a tensor (whose
|
||||
rank is one more than that of the given shape) via calls to `append`. The
|
||||
|
@ -30,12 +29,12 @@ class TensorBuffer(object):
|
|||
`values`.
|
||||
"""
|
||||
|
||||
def __init__(self, max_size, shape, dtype=tf.int32, name=None):
|
||||
def __init__(self, capacity, shape, dtype=tf.int32, name=None):
|
||||
"""Initializes the TensorBuffer.
|
||||
|
||||
Args:
|
||||
max_size: The maximum size. Attempts to append more than this many rows
|
||||
will fail with an exception.
|
||||
capacity: Initial capacity. Buffer will double in capacity each time it is
|
||||
filled to capacity.
|
||||
shape: The shape (as tuple or list) of the tensors to accumulate.
|
||||
dtype: The type of the tensors.
|
||||
name: A string name for the variable_scope used.
|
||||
|
@ -45,19 +44,24 @@ class TensorBuffer(object):
|
|||
"""
|
||||
shape = list(shape)
|
||||
self._rank = len(shape)
|
||||
self._name = name
|
||||
self._dtype = dtype
|
||||
if not self._rank:
|
||||
raise ValueError('Shape cannot be scalar.')
|
||||
shape = [max_size] + shape
|
||||
shape = [capacity] + shape
|
||||
|
||||
with tf.variable_scope(name):
|
||||
with tf.variable_scope(self._name):
|
||||
# We need to use a placeholder as the initial value to allow resizing.
|
||||
self._buffer = tf.Variable(
|
||||
initial_value=tf.zeros(shape, dtype),
|
||||
initial_value=tf.placeholder_with_default(
|
||||
tf.zeros(shape, dtype), shape=None),
|
||||
trainable=False,
|
||||
name='buffer')
|
||||
self._size = tf.Variable(
|
||||
initial_value=0,
|
||||
trainable=False,
|
||||
name='size')
|
||||
name='buffer',
|
||||
use_resource=True)
|
||||
self._current_size = tf.Variable(
|
||||
initial_value=0, trainable=False, name='current_size')
|
||||
self._capacity = tf.Variable(
|
||||
initial_value=capacity, trainable=False, name='capacity')
|
||||
|
||||
def append(self, value):
|
||||
"""Appends a new tensor to the end of the buffer.
|
||||
|
@ -69,23 +73,59 @@ class TensorBuffer(object):
|
|||
Returns:
|
||||
An op appending the new tensor to the end of the buffer.
|
||||
"""
|
||||
with tf.control_dependencies([
|
||||
tf.assert_less(
|
||||
self._size,
|
||||
tf.shape(self._buffer)[0],
|
||||
message='Appending past end of TensorBuffer.'),
|
||||
tf.assert_equal(
|
||||
tf.shape(value),
|
||||
tf.shape(self._buffer)[1:],
|
||||
message='Appending value of inconsistent shape.')]):
|
||||
with tf.control_dependencies(
|
||||
[tf.assign(self._buffer[self._size, :], value)]):
|
||||
return tf.assign_add(self._size, 1)
|
||||
|
||||
def _double_capacity():
|
||||
"""Doubles the capacity of the current tensor buffer."""
|
||||
padding = tf.zeros_like(self._buffer, self._buffer.dtype)
|
||||
new_buffer = tf.concat([self._buffer, padding], axis=0)
|
||||
if tf.executing_eagerly():
|
||||
with tf.variable_scope(self._name, reuse=True):
|
||||
self._buffer = tf.get_variable(
|
||||
name='buffer',
|
||||
dtype=self._dtype,
|
||||
initializer=new_buffer,
|
||||
trainable=False)
|
||||
return self._buffer, tf.assign(self._capacity,
|
||||
tf.multiply(self._capacity, 2))
|
||||
else:
|
||||
return tf.assign(
|
||||
self._buffer, new_buffer,
|
||||
validate_shape=False), tf.assign(self._capacity,
|
||||
tf.multiply(self._capacity, 2))
|
||||
|
||||
update_buffer, update_capacity = tf.cond(
|
||||
tf.equal(self._current_size, self._capacity),
|
||||
_double_capacity, lambda: (self._buffer, self._capacity))
|
||||
|
||||
with tf.control_dependencies([update_buffer, update_capacity]):
|
||||
with tf.control_dependencies([
|
||||
tf.assert_less(
|
||||
self._current_size,
|
||||
self._capacity,
|
||||
message='Appending past end of TensorBuffer.'),
|
||||
tf.assert_equal(
|
||||
tf.shape(value),
|
||||
tf.shape(self._buffer)[1:],
|
||||
message='Appending value of inconsistent shape.')
|
||||
]):
|
||||
with tf.control_dependencies(
|
||||
[tf.assign(self._buffer[self._current_size, :], value)]):
|
||||
return tf.assign_add(self._current_size, 1)
|
||||
|
||||
@property
|
||||
def values(self):
|
||||
"""Returns the accumulated tensor."""
|
||||
begin_value = tf.zeros([self._rank + 1], dtype=tf.int32)
|
||||
value_size = tf.concat(
|
||||
[[self._size], tf.constant(-1, tf.int32, [self._rank])], 0)
|
||||
value_size = tf.concat([[self._current_size],
|
||||
tf.constant(-1, tf.int32, [self._rank])], 0)
|
||||
return tf.slice(self._buffer, begin_value, value_size)
|
||||
|
||||
@property
|
||||
def current_size(self):
|
||||
"""Returns the current number of tensors in the buffer."""
|
||||
return self._current_size
|
||||
|
||||
@property
|
||||
def capacity(self):
|
||||
"""Returns the current capacity of the buffer."""
|
||||
return self._capacity
|
||||
|
|
|
@ -11,7 +11,7 @@
|
|||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for tensor_buffer."""
|
||||
"""Tests for tensor_buffer in eager mode."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
|
@ -25,6 +25,7 @@ tf.enable_eager_execution()
|
|||
|
||||
|
||||
class TensorBufferTest(tf.test.TestCase):
|
||||
"""Tests for TensorBuffer in eager mode."""
|
||||
|
||||
def test_basic(self):
|
||||
size, shape = 2, [2, 3]
|
||||
|
@ -53,20 +54,30 @@ class TensorBufferTest(tf.test.TestCase):
|
|||
'Appending value of inconsistent shape.'):
|
||||
my_buffer.append(tf.ones(shape=[3, 4], dtype=tf.int32))
|
||||
|
||||
def test_fail_on_overflow(self):
|
||||
def test_resize(self):
|
||||
size, shape = 2, [2, 3]
|
||||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
|
||||
# First two should succeed.
|
||||
my_buffer.append(tf.ones(shape=shape, dtype=tf.int32))
|
||||
my_buffer.append(tf.ones(shape=shape, dtype=tf.int32))
|
||||
# Append three buffers. Third one should succeed after resizing.
|
||||
value1 = [[1, 2, 3], [4, 5, 6]]
|
||||
my_buffer.append(value1)
|
||||
self.assertAllEqual(my_buffer.values.numpy(), [value1])
|
||||
self.assertAllEqual(my_buffer.current_size.numpy(), 1)
|
||||
self.assertAllEqual(my_buffer.capacity.numpy(), 2)
|
||||
|
||||
# Third one should fail.
|
||||
with self.assertRaisesRegex(
|
||||
tf.errors.InvalidArgumentError,
|
||||
'Appending past end of TensorBuffer.'):
|
||||
my_buffer.append(tf.ones(shape=shape, dtype=tf.int32))
|
||||
value2 = [[4, 5, 6], [7, 8, 9]]
|
||||
my_buffer.append(value2)
|
||||
self.assertAllEqual(my_buffer.values.numpy(), [value1, value2])
|
||||
self.assertAllEqual(my_buffer.current_size.numpy(), 2)
|
||||
self.assertAllEqual(my_buffer.capacity.numpy(), 2)
|
||||
|
||||
value3 = [[7, 8, 9], [10, 11, 12]]
|
||||
my_buffer.append(value3)
|
||||
self.assertAllEqual(my_buffer.values.numpy(), [value1, value2, value3])
|
||||
self.assertAllEqual(my_buffer.current_size.numpy(), 3)
|
||||
# Capacity should have doubled.
|
||||
self.assertAllEqual(my_buffer.capacity.numpy(), 4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
72
privacy/analysis/tensor_buffer_test_graph.py
Normal file
72
privacy/analysis/tensor_buffer_test_graph.py
Normal file
|
@ -0,0 +1,72 @@
|
|||
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Tests for tensor_buffer in graph mode."""
|
||||
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from privacy.analysis import tensor_buffer
|
||||
|
||||
|
||||
class TensorBufferTest(tf.test.TestCase):
|
||||
"""Tests for TensorBuffer in graph mode."""
|
||||
|
||||
def test_noresize(self):
|
||||
"""Test buffer does not resize if capacity is not exceeded."""
|
||||
with self.cached_session() as sess:
|
||||
size, shape = 2, [2, 3]
|
||||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
value1 = [[1, 2, 3], [4, 5, 6]]
|
||||
with tf.control_dependencies([my_buffer.append(value1)]):
|
||||
value2 = [[7, 8, 9], [10, 11, 12]]
|
||||
with tf.control_dependencies([my_buffer.append(value2)]):
|
||||
values = my_buffer.values
|
||||
current_size = my_buffer.current_size
|
||||
capacity = my_buffer.capacity
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
|
||||
v, cs, cap = sess.run([values, current_size, capacity])
|
||||
self.assertAllEqual(v, [value1, value2])
|
||||
self.assertEqual(cs, 2)
|
||||
self.assertEqual(cap, 2)
|
||||
|
||||
def test_resize(self):
|
||||
"""Test buffer resizes if capacity is exceeded."""
|
||||
with self.cached_session() as sess:
|
||||
size, shape = 2, [2, 3]
|
||||
|
||||
my_buffer = tensor_buffer.TensorBuffer(size, shape, name='my_buffer')
|
||||
value1 = [[1, 2, 3], [4, 5, 6]]
|
||||
with tf.control_dependencies([my_buffer.append(value1)]):
|
||||
value2 = [[7, 8, 9], [10, 11, 12]]
|
||||
with tf.control_dependencies([my_buffer.append(value2)]):
|
||||
value3 = [[13, 14, 15], [16, 17, 18]]
|
||||
with tf.control_dependencies([my_buffer.append(value3)]):
|
||||
values = my_buffer.values
|
||||
current_size = my_buffer.current_size
|
||||
capacity = my_buffer.capacity
|
||||
self.evaluate(tf.global_variables_initializer())
|
||||
|
||||
v, cs, cap = sess.run([values, current_size, capacity])
|
||||
self.assertAllEqual(v, [value1, value2, value3])
|
||||
self.assertEqual(cs, 3)
|
||||
self.assertEqual(cap, 4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
tf.test.main()
|
Loading…
Reference in a new issue