From 2ef5c6e332af1180a62108a4d2815f97f6d3cffd Mon Sep 17 00:00:00 2001 From: woodyx218 Date: Sun, 19 Jan 2020 20:29:37 +0800 Subject: [PATCH] Add files via upload --- .../privacy/analysis/gdp_accountant.py | 61 +++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 tensorflow_privacy/privacy/analysis/gdp_accountant.py diff --git a/tensorflow_privacy/privacy/analysis/gdp_accountant.py b/tensorflow_privacy/privacy/analysis/gdp_accountant.py new file mode 100644 index 0000000..5ac82f8 --- /dev/null +++ b/tensorflow_privacy/privacy/analysis/gdp_accountant.py @@ -0,0 +1,61 @@ +# Copyright 2015 The TensorFlow Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================= + +r"""This code applies the Dual and Central Limit +Theorem (CLT) to estimate privacy budget of an iterated subsampled +Gaussian Mechanism (by either uniform or Poisson subsampling). +""" + + +import numpy as np +from scipy.stats import norm +from scipy import optimize + +# Total number of examples:N +# batch size:batch_size +# Noise multiplier for DP-SGD/DP-Adam:noise_multiplier +# current epoch:epoch +# Target delta:delta + +def compute_mu_uniform(epoch, noise_multi, N, batch_size): + '''Compute mu from uniform subsampling''' + T = epoch*N/batch_size + c = batch_size*np.sqrt(T)/N + return np.sqrt(2)*c*np.sqrt(np.exp(noise_multi**(-2))*\ + norm.cdf(1.5/noise_multi)+3*norm.cdf(-0.5/noise_multi)-2) + +def compute_mu_Poisson(epoch, noise_multi, N, batch_size): + '''Compute mu from Poisson subsampling''' + T = epoch*N/batch_size + return np.sqrt(np.exp(noise_multi**(-2))-1)*np.sqrt(T)*batch_size/N + +def delta_eps_mu(eps, mu): + '''Dual between mu-GDP and (epsilon, delta)-DP''' + return norm.cdf(-eps/mu+mu/2)-np.exp(eps)*norm.cdf(-eps/mu-mu/2) + +def eps_from_mu(mu, delta): + '''inverse Dual''' + def f(x): + '''reversely solving dual''' + return delta_eps_mu(x, mu) - delta + return optimize.root_scalar(f, bracket=[0, 500], method='brentq').root + +def compute_eps_uniform(epoch, noise_multi, N, batch_size, delta): + '''inverse Dual of uniform subsampling''' + return eps_from_mu(compute_mu_uniform(epoch, noise_multi, N, batch_size), delta) + +def compute_eps_Poisson(epoch, noise_multi, N, batch_size, delta): + '''inverse Dual of Poisson subsampling''' + return eps_from_mu(compute_mu_Poisson(epoch, noise_multi, N, batch_size), delta)